1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Export Relations Morphisms Setoid Equalities.
Set Implicit Arguments.
Unset Strict Implicit.
(** * Ordered types *)
(** First, signatures with only the order relations *)
Module Type HasLt (Import T:Typ).
Parameter Inline(40) lt : t -> t -> Prop.
End HasLt.
Module Type HasLe (Import T:Typ).
Parameter Inline(40) le : t -> t -> Prop.
End HasLe.
Module Type EqLt := Typ <+ HasEq <+ HasLt.
Module Type EqLe := Typ <+ HasEq <+ HasLe.
Module Type EqLtLe := Typ <+ HasEq <+ HasLt <+ HasLe.
(** Versions with nice notations *)
Module Type LtNotation (E:EqLt).
Infix "<" := E.lt.
Notation "x > y" := (y<x) (only parsing).
Notation "x < y < z" := (x<y /\ y<z).
End LtNotation.
Module Type LeNotation (E:EqLe).
Infix "<=" := E.le.
Notation "x >= y" := (y<=x) (only parsing).
Notation "x <= y <= z" := (x<=y /\ y<=z).
End LeNotation.
Module Type LtLeNotation (E:EqLtLe).
Include LtNotation E <+ LeNotation E.
Notation "x <= y < z" := (x<=y /\ y<z).
Notation "x < y <= z" := (x<y /\ y<=z).
End LtLeNotation.
Module Type EqLtNotation (E:EqLt) := EqNotation E <+ LtNotation E.
Module Type EqLeNotation (E:EqLe) := EqNotation E <+ LeNotation E.
Module Type EqLtLeNotation (E:EqLtLe) := EqNotation E <+ LtLeNotation E.
Module Type EqLt' := EqLt <+ EqLtNotation.
Module Type EqLe' := EqLe <+ EqLeNotation.
Module Type EqLtLe' := EqLtLe <+ EqLtLeNotation.
(** Versions with logical specifications *)
Module Type IsStrOrder (Import E:EqLt).
#[global]
Declare Instance lt_strorder : StrictOrder lt.
#[global]
Declare Instance lt_compat : Proper (eq==>eq==>iff) lt.
End IsStrOrder.
Module Type LeIsLtEq (Import E:EqLtLe').
Axiom le_lteq : forall x y, x<=y <-> x<y \/ x==y.
End LeIsLtEq.
Module Type StrOrder := EqualityType <+ HasLt <+ IsStrOrder.
Module Type StrOrder' := StrOrder <+ EqLtNotation.
(** Versions with a decidable ternary comparison *)
Module Type HasCmp (Import T:Typ).
Parameter Inline compare : t -> t -> comparison.
End HasCmp.
Module Type CmpNotation (T:Typ)(C:HasCmp T).
Infix "?=" := C.compare (at level 70, no associativity).
End CmpNotation.
Module Type CmpSpec (Import E:EqLt')(Import C:HasCmp E).
Axiom compare_spec : forall x y, CompareSpec (x==y) (x<y) (y<x) (compare x y).
End CmpSpec.
Module Type HasCompare (E:EqLt) := HasCmp E <+ CmpSpec E.
Module Type DecStrOrder := StrOrder <+ HasCompare.
Module Type DecStrOrder' := DecStrOrder <+ EqLtNotation <+ CmpNotation.
Module Type OrderedType <: DecidableType := DecStrOrder <+ HasEqDec.
Module Type OrderedType' := OrderedType <+ EqLtNotation <+ CmpNotation.
Module Type OrderedTypeFull := OrderedType <+ HasLe <+ LeIsLtEq.
Module Type OrderedTypeFull' :=
OrderedTypeFull <+ EqLtLeNotation <+ CmpNotation.
(** NB: in [OrderedType], an [eq_dec] could be deduced from [compare].
But adding this redundant field allows seeing an [OrderedType] as a
[DecidableType]. *)
(** * Versions with [eq] being the usual Leibniz equality of Coq *)
Module Type UsualStrOrder := UsualEqualityType <+ HasLt <+ IsStrOrder.
Module Type UsualDecStrOrder := UsualStrOrder <+ HasCompare.
Module Type UsualOrderedType <: UsualDecidableType <: OrderedType
:= UsualDecStrOrder <+ HasEqDec.
Module Type UsualOrderedTypeFull := UsualOrderedType <+ HasLe <+ LeIsLtEq.
(** NB: in [UsualOrderedType], the field [lt_compat] is
useless since [eq] is [Leibniz], but it should be
there for subtyping. *)
Module Type UsualStrOrder' := UsualStrOrder <+ LtNotation.
Module Type UsualDecStrOrder' := UsualDecStrOrder <+ LtNotation.
Module Type UsualOrderedType' := UsualOrderedType <+ LtNotation.
Module Type UsualOrderedTypeFull' := UsualOrderedTypeFull <+ LtLeNotation.
(** * Purely logical versions *)
Module Type LtIsTotal (Import E:EqLt').
Axiom lt_total : forall x y, x<y \/ x==y \/ y<x.
End LtIsTotal.
Module Type TotalOrder := StrOrder <+ HasLe <+ LeIsLtEq <+ LtIsTotal.
Module Type UsualTotalOrder <: TotalOrder
:= UsualStrOrder <+ HasLe <+ LeIsLtEq <+ LtIsTotal.
Module Type TotalOrder' := TotalOrder <+ EqLtLeNotation.
Module Type UsualTotalOrder' := UsualTotalOrder <+ LtLeNotation.
(** * Conversions *)
(** From [compare] to [eqb], and then [eq_dec] *)
Module Compare2EqBool (Import O:DecStrOrder') <: HasEqBool O.
Definition eqb x y :=
match compare x y with Eq => true | _ => false end.
Lemma eqb_eq : forall x y, eqb x y = true <-> x==y.
Proof.
unfold eqb. intros x y.
destruct (compare_spec x y) as [H|H|H]; split; auto; try discriminate.
- intros EQ; rewrite EQ in H; elim (StrictOrder_Irreflexive _ H).
- intros EQ; rewrite EQ in H; elim (StrictOrder_Irreflexive _ H).
Qed.
End Compare2EqBool.
Module DSO_to_OT (O:DecStrOrder) <: OrderedType :=
O <+ Compare2EqBool <+ HasEqBool2Dec.
(** From [OrderedType] To [OrderedTypeFull] (adding [<=]) *)
Module OT_to_Full (O:OrderedType') <: OrderedTypeFull.
Include O.
Definition le x y := x<y \/ x==y.
Lemma le_lteq : forall x y, le x y <-> x<y \/ x==y.
Proof. unfold le; split; auto. Qed.
End OT_to_Full.
(** From computational to logical versions *)
Module OTF_LtIsTotal (Import O:OrderedTypeFull') <: LtIsTotal O.
Lemma lt_total : forall x y, x<y \/ x==y \/ y<x.
Proof. intros x y; destruct (compare_spec x y); auto. Qed.
End OTF_LtIsTotal.
Module OTF_to_TotalOrder (O:OrderedTypeFull) <: TotalOrder
:= O <+ OTF_LtIsTotal.
(** * Versions with boolean comparisons
This style is used in [Mergesort]
*)
(** For stating properties like transitivity of [leb],
we coerce [bool] into [Prop]. *)
Local Coercion is_true : bool >-> Sortclass.
#[global]
Hint Unfold is_true : core.
Module Type HasLeb (Import T:Typ).
Parameter Inline leb : t -> t -> bool.
End HasLeb.
Module Type HasLtb (Import T:Typ).
Parameter Inline ltb : t -> t -> bool.
End HasLtb.
Module Type LebNotation (T:Typ)(E:HasLeb T).
Infix "<=?" := E.leb (at level 70, no associativity).
End LebNotation.
Module Type LtbNotation (T:Typ)(E:HasLtb T).
Infix "<?" := E.ltb (at level 70, no associativity).
End LtbNotation.
Module Type LebSpec (T:Typ)(X:HasLe T)(Y:HasLeb T).
Parameter leb_le : forall x y, Y.leb x y = true <-> X.le x y.
End LebSpec.
Module Type LtbSpec (T:Typ)(X:HasLt T)(Y:HasLtb T).
Parameter ltb_lt : forall x y, Y.ltb x y = true <-> X.lt x y.
End LtbSpec.
Module Type LeBool := Typ <+ HasLeb.
Module Type LtBool := Typ <+ HasLtb.
Module Type LeBool' := LeBool <+ LebNotation.
Module Type LtBool' := LtBool <+ LtbNotation.
Module Type LebIsTotal (Import X:LeBool').
Axiom leb_total : forall x y, (x <=? y) = true \/ (y <=? x) = true.
End LebIsTotal.
Module Type TotalLeBool := LeBool <+ LebIsTotal.
Module Type TotalLeBool' := LeBool' <+ LebIsTotal.
Module Type LebIsTransitive (Import X:LeBool').
Axiom leb_trans : Transitive X.leb.
End LebIsTransitive.
Module Type TotalTransitiveLeBool := TotalLeBool <+ LebIsTransitive.
Module Type TotalTransitiveLeBool' := TotalLeBool' <+ LebIsTransitive.
(** Grouping all boolean comparison functions *)
Module Type HasBoolOrdFuns (T:Typ) := HasEqb T <+ HasLtb T <+ HasLeb T.
Module Type HasBoolOrdFuns' (T:Typ) :=
HasBoolOrdFuns T <+ EqbNotation T <+ LtbNotation T <+ LebNotation T.
Module Type BoolOrdSpecs (O:EqLtLe)(F:HasBoolOrdFuns O) :=
EqbSpec O O F <+ LtbSpec O O F <+ LebSpec O O F.
Module Type OrderFunctions (E:EqLtLe) :=
HasCompare E <+ HasBoolOrdFuns E <+ BoolOrdSpecs E.
Module Type OrderFunctions' (E:EqLtLe) :=
HasCompare E <+ CmpNotation E <+ HasBoolOrdFuns' E <+ BoolOrdSpecs E.
(** * From [OrderedTypeFull] to [TotalTransitiveLeBool] *)
Module OTF_to_TTLB (Import O : OrderedTypeFull') <: TotalTransitiveLeBool.
Definition leb x y :=
match compare x y with Gt => false | _ => true end.
Lemma leb_le : forall x y, leb x y <-> x <= y.
Proof.
intros x y. unfold leb. rewrite le_lteq.
destruct (compare_spec x y) as [EQ|LT|GT]; split; auto.
- discriminate.
- intros LE. elim (StrictOrder_Irreflexive x).
destruct LE as [LT|EQ].
+ now transitivity y.
+ now rewrite <- EQ in GT.
Qed.
Lemma leb_total : forall x y, leb x y \/ leb y x.
Proof.
intros x y. rewrite 2 leb_le. rewrite 2 le_lteq.
destruct (compare_spec x y); intuition.
Qed.
Lemma leb_trans : Transitive leb.
Proof.
intros x y z. rewrite !leb_le, !le_lteq.
intros [Hxy|Hxy] [Hyz|Hyz].
- left; transitivity y; auto.
- left; rewrite <- Hyz; auto.
- left; rewrite Hxy; auto.
- right; transitivity y; auto.
Qed.
Definition t := t.
End OTF_to_TTLB.
(** * From [TotalTransitiveLeBool] to [OrderedTypeFull]
[le] is [leb ... = true].
[eq] is [le /\ swap le].
[lt] is [le /\ ~swap le].
*)
Local Open Scope bool_scope.
Module TTLB_to_OTF (Import O : TotalTransitiveLeBool') <: OrderedTypeFull.
Definition t := t.
Definition le x y : Prop := x <=? y.
Definition eq x y : Prop := le x y /\ le y x.
Definition lt x y : Prop := le x y /\ ~le y x.
Definition compare x y :=
if x <=? y then (if y <=? x then Eq else Lt) else Gt.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
intros x y. unfold compare.
case_eq (x <=? y).
- case_eq (y <=? x).
+ constructor. split; auto.
+ constructor. split; congruence.
- constructor. destruct (leb_total x y); split; congruence.
Qed.
Definition eqb x y := (x <=? y) && (y <=? x).
Lemma eqb_eq : forall x y, eqb x y <-> eq x y.
Proof.
intros. unfold eq, eqb, le.
case leb; simpl; intuition; discriminate.
Qed.
Include HasEqBool2Dec.
#[global]
Instance eq_equiv : Equivalence eq.
Proof.
split.
- intros x; unfold eq, le. destruct (leb_total x x); auto.
- intros x y; unfold eq, le. intuition.
- intros x y z; unfold eq, le. intuition; apply leb_trans with y; auto.
Qed.
#[global]
Instance lt_strorder : StrictOrder lt.
Proof.
split.
- intros x. unfold lt; red; intuition.
- intros x y z; unfold lt, le. intuition.
+ apply leb_trans with y; auto.
+ absurd (z <=? y); auto.
apply leb_trans with x; auto.
Qed.
#[global]
Instance lt_compat : Proper (eq ==> eq ==> iff) lt.
Proof.
apply proper_sym_impl_iff_2; auto with *.
intros x x' Hx y y' Hy' H. unfold eq, lt, le in *.
intuition.
- apply leb_trans with x; auto.
apply leb_trans with y; auto.
- absurd (y <=? x); auto.
apply leb_trans with x'; auto.
apply leb_trans with y'; auto.
Qed.
Definition le_lteq : forall x y, le x y <-> lt x y \/ eq x y.
Proof.
intros x y.
unfold lt, eq, le.
split; [ | intuition ].
intros LE.
case_eq (y <=? x); [right|left]; intuition; try discriminate.
Qed.
End TTLB_to_OTF.
|