File: Zpow_def.v

package info (click to toggle)
coq 8.16.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 40,596 kB
  • sloc: ml: 219,376; sh: 3,545; python: 3,231; ansic: 2,529; makefile: 767; lisp: 279; javascript: 63; xml: 24; sed: 2
file content (33 lines) | stat: -rw-r--r-- 1,512 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import BinInt Ring_theory.
Local Open Scope Z_scope.

(** * Power functions over [Z] *)

(** Nota : this file is mostly deprecated. The definition of [Z.pow]
    and its usual properties are now provided by module [BinInt.Z]. *)

Notation Zpower_pos := Z.pow_pos (only parsing).
Notation Zpower := Z.pow (only parsing).
Notation Zpower_0_r := Z.pow_0_r (only parsing).
Notation Zpower_succ_r := Z.pow_succ_r (only parsing).
Notation Zpower_neg_r := Z.pow_neg_r (only parsing).
Notation Zpower_Ppow := Pos2Z.inj_pow (only parsing).

Lemma Zpower_theory : power_theory 1 Z.mul (@eq Z) Z.of_N Z.pow.
Proof.
 constructor. intros z n.
 destruct n as [|p];simpl;trivial.
 unfold Z.pow_pos.
 rewrite <- (Z.mul_1_r (pow_pos _ _ _)). generalize 1.
 induction p as [p IHp|p IHp|]; simpl; intros; rewrite ?IHp, ?Z.mul_assoc; trivial.
Qed.