1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Export List.
Require Export Bintree.
Require Import Bool BinPos.
Declare ML Module "rtauto_plugin:coq-core.plugins.rtauto".
Ltac clean:=try (simpl;congruence).
Inductive form:Set:=
Atom : positive -> form
| Arrow : form -> form -> form
| Bot
| Conjunct : form -> form -> form
| Disjunct : form -> form -> form.
Notation "[ n ]":=(Atom n).
Notation "A =>> B":= (Arrow A B) (at level 59, right associativity).
Notation "#" := Bot.
Notation "A //\\ B" := (Conjunct A B) (at level 57, left associativity).
Notation "A \\// B" := (Disjunct A B) (at level 58, left associativity).
Definition ctx := Store form.
Fixpoint pos_eq (m n:positive) {struct m} :bool :=
match m with
xI mm => match n with xI nn => pos_eq mm nn | _ => false end
| xO mm => match n with xO nn => pos_eq mm nn | _ => false end
| xH => match n with xH => true | _ => false end
end.
Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
induction m;simpl;destruct n;congruence ||
(intro e;apply f_equal;auto).
Qed.
Fixpoint form_eq (p q:form) {struct p} :bool :=
match p with
Atom m => match q with Atom n => pos_eq m n | _ => false end
| Arrow p1 p2 =>
match q with
Arrow q1 q2 => form_eq p1 q1 && form_eq p2 q2
| _ => false end
| Bot => match q with Bot => true | _ => false end
| Conjunct p1 p2 =>
match q with
Conjunct q1 q2 => form_eq p1 q1 && form_eq p2 q2
| _ => false
end
| Disjunct p1 p2 =>
match q with
Disjunct q1 q2 => form_eq p1 q1 && form_eq p2 q2
| _ => false
end
end.
Theorem form_eq_refl: forall p q, form_eq p q = true -> p = q.
induction p;destruct q;simpl;clean.
intro h;generalize (pos_eq_refl _ _ h);congruence.
case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
Qed.
Arguments form_eq_refl [p q] _.
Section with_env.
Variable env:Store Prop.
Fixpoint interp_form (f:form): Prop :=
match f with
[n]=> match get n env with PNone => True | PSome P => P end
| A =>> B => (interp_form A) -> (interp_form B)
| # => False
| A //\\ B => (interp_form A) /\ (interp_form B)
| A \\// B => (interp_form A) \/ (interp_form B)
end.
Notation "[[ A ]]" := (interp_form A).
Fixpoint interp_ctx (hyps:ctx) (F:Full hyps) (G:Prop) {struct F} : Prop :=
match F with
F_empty => G
| F_push H hyps0 F0 => interp_ctx hyps0 F0 ([[H]] -> G)
end.
Ltac wipe := intros;simpl;constructor.
Lemma compose0 :
forall hyps F (A:Prop),
A ->
(interp_ctx hyps F A).
induction F;intros A H;simpl;auto.
Qed.
Lemma compose1 :
forall hyps F (A B:Prop),
(A -> B) ->
(interp_ctx hyps F A) ->
(interp_ctx hyps F B).
induction F;intros A B H;simpl;auto.
apply IHF;auto.
Qed.
Theorem compose2 :
forall hyps F (A B C:Prop),
(A -> B -> C) ->
(interp_ctx hyps F A) ->
(interp_ctx hyps F B) ->
(interp_ctx hyps F C).
induction F;intros A B C H;simpl;auto.
apply IHF;auto.
Qed.
Theorem compose3 :
forall hyps F (A B C D:Prop),
(A -> B -> C -> D) ->
(interp_ctx hyps F A) ->
(interp_ctx hyps F B) ->
(interp_ctx hyps F C) ->
(interp_ctx hyps F D).
induction F;intros A B C D H;simpl;auto.
apply IHF;auto.
Qed.
Lemma weaken : forall hyps F f G,
(interp_ctx hyps F G) ->
(interp_ctx (hyps\f) (F_push f hyps F) G).
induction F;simpl;intros;auto.
apply compose1 with ([[a]]-> G);auto.
Qed.
Theorem project_In : forall hyps F g,
In g hyps F ->
interp_ctx hyps F [[g]].
induction F;simpl.
contradiction.
intros g H;destruct H.
subst;apply compose0;simpl;trivial.
apply compose1 with [[g]];auto.
Qed.
Theorem project : forall hyps F p g,
get p hyps = PSome g->
interp_ctx hyps F [[g]].
intros hyps F p g e; apply project_In.
apply get_In with p;assumption.
Qed.
Arguments project [hyps] F [p g] _.
Inductive proof:Set :=
Ax : positive -> proof
| I_Arrow : proof -> proof
| E_Arrow : positive -> positive -> proof -> proof
| D_Arrow : positive -> proof -> proof -> proof
| E_False : positive -> proof
| I_And: proof -> proof -> proof
| E_And: positive -> proof -> proof
| D_And: positive -> proof -> proof
| I_Or_l: proof -> proof
| I_Or_r: proof -> proof
| E_Or: positive -> proof -> proof -> proof
| D_Or: positive -> proof -> proof
| Cut: form -> proof -> proof -> proof.
Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).
Fixpoint check_proof (hyps:ctx) (gl:form) (P:proof) {struct P}: bool :=
match P with
Ax i =>
match get i hyps with
PSome F => form_eq F gl
| _ => false
end
| I_Arrow p =>
match gl with
A =>> B => check_proof (hyps \ A) B p
| _ => false
end
| E_Arrow i j p =>
match get i hyps,get j hyps with
PSome A,PSome (B =>>C) =>
form_eq A B && check_proof (hyps \ C) (gl) p
| _,_ => false
end
| D_Arrow i p1 p2 =>
match get i hyps with
PSome ((A =>>B)=>>C) =>
(check_proof ( hyps \ B =>> C \ A) B p1) && (check_proof (hyps \ C) gl p2)
| _ => false
end
| E_False i =>
match get i hyps with
PSome # => true
| _ => false
end
| I_And p1 p2 =>
match gl with
A //\\ B =>
check_proof hyps A p1 && check_proof hyps B p2
| _ => false
end
| E_And i p =>
match get i hyps with
PSome (A //\\ B) => check_proof (hyps \ A \ B) gl p
| _=> false
end
| D_And i p =>
match get i hyps with
PSome (A //\\ B =>> C) => check_proof (hyps \ A=>>B=>>C) gl p
| _=> false
end
| I_Or_l p =>
match gl with
(A \\// B) => check_proof hyps A p
| _ => false
end
| I_Or_r p =>
match gl with
(A \\// B) => check_proof hyps B p
| _ => false
end
| E_Or i p1 p2 =>
match get i hyps with
PSome (A \\// B) =>
check_proof (hyps \ A) gl p1 && check_proof (hyps \ B) gl p2
| _=> false
end
| D_Or i p =>
match get i hyps with
PSome (A \\// B =>> C) =>
(check_proof (hyps \ A=>>C \ B=>>C) gl p)
| _=> false
end
| Cut A p1 p2 =>
check_proof hyps A p1 && check_proof (hyps \ A) gl p2
end.
Theorem interp_proof:
forall p hyps F gl,
check_proof hyps gl p = true -> interp_ctx hyps F [[gl]].
induction p; intros hyps F gl.
- (* Axiom *)
simpl;case_eq (get p hyps);clean.
intros f nth_f e;rewrite <- (form_eq_refl e).
apply project with p;trivial.
- (* Arrow_Intro *)
destruct gl; clean.
simpl; intros.
change (interp_ctx (hyps\gl1) (F_push gl1 hyps F) [[gl2]]).
apply IHp; try constructor; trivial.
- (* Arrow_Elim *)
simpl check_proof; case_eq (get p hyps); clean.
intros f ef; case_eq (get p0 hyps); clean.
intros f0 ef0; destruct f0; clean.
case_eq (form_eq f f0_1); clean.
simpl; intros e check_p1.
generalize (project F ef) (project F ef0)
(IHp (hyps \ f0_2) (F_push f0_2 hyps F) gl check_p1);
clear check_p1 IHp p p0 p1 ef ef0.
simpl.
apply compose3.
rewrite (form_eq_refl e).
auto.
- (* Arrow_Destruct *)
simpl; case_eq (get p1 hyps); clean.
intros f ef; destruct f; clean.
destruct f1; clean.
case_eq (check_proof (hyps \ f1_2 =>> f2 \ f1_1) f1_2 p2); clean.
intros check_p1 check_p2.
generalize (project F ef)
(IHp1 (hyps \ f1_2 =>> f2 \ f1_1)
(F_push f1_1 (hyps \ f1_2 =>> f2)
(F_push (f1_2 =>> f2) hyps F)) f1_2 check_p1)
(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2).
simpl; apply compose3; auto.
- (* False_Elim *)
simpl; case_eq (get p hyps); clean.
intros f ef; destruct f; clean.
intros _; generalize (project F ef).
apply compose1; apply False_ind.
- (* And_Intro *)
simpl; destruct gl; clean.
case_eq (check_proof hyps gl1 p1); clean.
intros Hp1 Hp2;generalize (IHp1 hyps F gl1 Hp1) (IHp2 hyps F gl2 Hp2).
apply compose2 ; simpl; auto.
- (* And_Elim *)
simpl; case_eq (get p hyps); clean.
intros f ef; destruct f; clean.
intro check_p;
generalize (project F ef)
(IHp (hyps \ f1 \ f2) (F_push f2 (hyps \ f1) (F_push f1 hyps F)) gl check_p).
simpl; apply compose2; intros [h1 h2]; auto.
- (* And_Destruct*)
simpl; case_eq (get p hyps); clean.
intros f ef; destruct f; clean.
destruct f1; clean.
intro H;
generalize (project F ef)
(IHp (hyps \ f1_1 =>> f1_2 =>> f2)
(F_push (f1_1 =>> f1_2 =>> f2) hyps F) gl H);
clear H; simpl.
apply compose2; auto.
- (* Or_Intro_left *)
destruct gl; clean.
intro Hp; generalize (IHp hyps F gl1 Hp).
apply compose1; simpl; auto.
- (* Or_Intro_right *)
destruct gl; clean.
intro Hp; generalize (IHp hyps F gl2 Hp).
apply compose1; simpl; auto.
- (* Or_elim *)
simpl; case_eq (get p1 hyps); clean.
intros f ef; destruct f; clean.
case_eq (check_proof (hyps \ f1) gl p2); clean.
intros check_p1 check_p2;
generalize (project F ef)
(IHp1 (hyps \ f1) (F_push f1 hyps F) gl check_p1)
(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2);
simpl; apply compose3; simpl; intro h; destruct h; auto.
- (* Or_Destruct *)
simpl; case_eq (get p hyps); clean.
intros f ef; destruct f; clean.
destruct f1; clean.
intro check_p0;
generalize (project F ef)
(IHp (hyps \ f1_1 =>> f2 \ f1_2 =>> f2)
(F_push (f1_2 =>> f2) (hyps \ f1_1 =>> f2)
(F_push (f1_1 =>> f2) hyps F)) gl check_p0);
simpl.
apply compose2; auto.
- (* Cut *)
simpl; case_eq (check_proof hyps f p1); clean.
intros check_p1 check_p2;
generalize (IHp1 hyps F f check_p1)
(IHp2 (hyps\f) (F_push f hyps F) gl check_p2);
simpl; apply compose2; auto.
Qed.
Theorem Reflect: forall gl prf, if check_proof empty gl prf then [[gl]] else True.
intros gl prf;case_eq (check_proof empty gl prf);intro check_prf.
change (interp_ctx empty F_empty [[gl]]) ;
apply interp_proof with prf;assumption.
trivial.
Qed.
End with_env.
(*
(* A small example *)
Parameters A B C D:Prop.
Theorem toto:A /\ (B \/ C) -> (A /\ B) \/ (A /\ C).
exact (Reflect (empty \ A \ B \ C)
([1] //\\ ([2] \\// [3]) =>> [1] //\\ [2] \\// [1] //\\ [3])
(I_Arrow (E_And 1 (E_Or 3
(I_Or_l (I_And (Ax 2) (Ax 4)))
(I_Or_r (I_And (Ax 2) (Ax 4))))))).
Qed.
Print toto.
*)
Register Reflect as plugins.rtauto.Reflect.
Register Atom as plugins.rtauto.Atom.
Register Arrow as plugins.rtauto.Arrow.
Register Bot as plugins.rtauto.Bot.
Register Conjunct as plugins.rtauto.Conjunct.
Register Disjunct as plugins.rtauto.Disjunct.
Register Ax as plugins.rtauto.Ax.
Register I_Arrow as plugins.rtauto.I_Arrow.
Register E_Arrow as plugins.rtauto.E_Arrow.
Register D_Arrow as plugins.rtauto.D_Arrow.
Register E_False as plugins.rtauto.E_False.
Register I_And as plugins.rtauto.I_And.
Register E_And as plugins.rtauto.E_And.
Register D_And as plugins.rtauto.D_And.
Register I_Or_l as plugins.rtauto.I_Or_l.
Register I_Or_r as plugins.rtauto.I_Or_r.
Register E_Or as plugins.rtauto.E_Or.
Register D_Or as plugins.rtauto.D_Or.
|