1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: mod_subst.ml 11924 2009-02-13 13:51:54Z soubiran $ *)
open Pp
open Util
open Names
open Term
(* WARNING: not every constant in the associative list domain used to exist
in the environment. This allows a simple implementation of the join
operation. However, iterating over the associative list becomes a non-sense
*)
type resolver = (constant * constr option) list
let make_resolver resolve = resolve
let apply_opt_resolver resolve kn =
match resolve with
None -> None
| Some resolve ->
try List.assoc kn resolve with Not_found -> None
type substitution_domain =
MSI of mod_self_id
| MBI of mod_bound_id
| MPI of module_path
let string_of_subst_domain = function
MSI msid -> debug_string_of_msid msid
| MBI mbid -> debug_string_of_mbid mbid
| MPI mp -> string_of_mp mp
module Umap = Map.Make(struct
type t = substitution_domain
let compare = Pervasives.compare
end)
type substitution = (module_path * resolver option) Umap.t
let empty_subst = Umap.empty
let add_msid msid mp =
Umap.add (MSI msid) (mp,None)
let add_mbid mbid mp resolve =
Umap.add (MBI mbid) (mp,resolve)
let add_mp mp1 mp2 =
Umap.add (MPI mp1) (mp2,None)
let map_msid msid mp = add_msid msid mp empty_subst
let map_mbid mbid mp resolve = add_mbid mbid mp resolve empty_subst
let map_mp mp1 mp2 = add_mp mp1 mp2 empty_subst
let list_contents sub =
let one_pair uid (mp,_) l =
(string_of_subst_domain uid, string_of_mp mp)::l
in
Umap.fold one_pair sub []
let debug_string_of_subst sub =
let l = List.map (fun (s1,s2) -> s1^"|->"^s2) (list_contents sub) in
"{" ^ String.concat "; " l ^ "}"
let debug_pr_subst sub =
let l = list_contents sub in
let f (s1,s2) = hov 2 (str s1 ++ spc () ++ str "|-> " ++ str s2)
in
str "{" ++ hov 2 (prlist_with_sep pr_coma f l) ++ str "}"
let subst_mp0 sub mp = (* 's like subst *)
let rec aux mp =
match mp with
| MPself sid ->
let mp',resolve = Umap.find (MSI sid) sub in
mp',resolve
| MPbound bid ->
let mp',resolve = Umap.find (MBI bid) sub in
mp',resolve
| MPdot (mp1,l) as mp2 ->
begin
try
let mp',resolve = Umap.find (MPI mp2) sub in
mp',resolve
with Not_found ->
let mp1',resolve = aux mp1 in
MPdot (mp1',l),resolve
end
| _ -> raise Not_found
in
try
Some (aux mp)
with Not_found -> None
let subst_mp sub mp =
match subst_mp0 sub mp with
None -> mp
| Some (mp',_) -> mp'
let subst_kn0 sub kn =
let mp,dir,l = repr_kn kn in
match subst_mp0 sub mp with
Some (mp',_) ->
Some (make_kn mp' dir l)
| None -> None
let subst_kn sub kn =
match subst_kn0 sub kn with
None -> kn
| Some kn' -> kn'
let subst_con sub con =
let mp,dir,l = repr_con con in
match subst_mp0 sub mp with
None -> con,mkConst con
| Some (mp',resolve) ->
let con' = make_con mp' dir l in
match apply_opt_resolver resolve con with
None -> con',mkConst con'
| Some t -> con',t
let subst_con0 sub con =
let mp,dir,l = repr_con con in
match subst_mp0 sub mp with
None -> None
| Some (mp',resolve) ->
let con' = make_con mp' dir l in
match apply_opt_resolver resolve con with
None -> Some (mkConst con')
| Some t -> Some t
(* Here the semantics is completely unclear.
What does "Hint Unfold t" means when "t" is a parameter?
Does the user mean "Unfold X.t" or does she mean "Unfold y"
where X.t is later on instantiated with y? I choose the first
interpretation (i.e. an evaluable reference is never expanded). *)
let subst_evaluable_reference subst = function
| EvalVarRef id -> EvalVarRef id
| EvalConstRef kn -> EvalConstRef (fst (subst_con subst kn))
let rec map_kn f f' c =
let func = map_kn f f' in
match kind_of_term c with
| Const kn ->
(match f' kn with
None -> c
| Some const ->const)
| Ind (kn,i) ->
(match f kn with
None -> c
| Some kn' ->
mkInd (kn',i))
| Construct ((kn,i),j) ->
(match f kn with
None -> c
| Some kn' ->
mkConstruct ((kn',i),j))
| Case (ci,p,ct,l) ->
let ci_ind =
let (kn,i) = ci.ci_ind in
(match f kn with None -> ci.ci_ind | Some kn' -> kn',i ) in
let p' = func p in
let ct' = func ct in
let l' = array_smartmap func l in
if (ci.ci_ind==ci_ind && p'==p
&& l'==l && ct'==ct)then c
else
mkCase ({ci with ci_ind = ci_ind},
p',ct', l')
| Cast (ct,k,t) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else mkCast (ct', k, t')
| Prod (na,t,ct) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else mkProd (na, t', ct')
| Lambda (na,t,ct) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else mkLambda (na, t', ct')
| LetIn (na,b,t,ct) ->
let ct' = func ct in
let t'= func t in
let b'= func b in
if (t'==t && ct'==ct && b==b') then c
else mkLetIn (na, b', t', ct')
| App (ct,l) ->
let ct' = func ct in
let l' = array_smartmap func l in
if (ct'== ct && l'==l) then c
else mkApp (ct',l')
| Evar (e,l) ->
let l' = array_smartmap func l in
if (l'==l) then c
else mkEvar (e,l')
| Fix (ln,(lna,tl,bl)) ->
let tl' = array_smartmap func tl in
let bl' = array_smartmap func bl in
if (bl == bl'&& tl == tl') then c
else mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl)) ->
let tl' = array_smartmap func tl in
let bl' = array_smartmap func bl in
if (bl == bl'&& tl == tl') then c
else mkCoFix (ln,(lna,tl',bl'))
| _ -> c
let subst_mps sub =
map_kn (subst_kn0 sub) (subst_con0 sub)
let rec replace_mp_in_mp mpfrom mpto mp =
match mp with
| _ when mp = mpfrom -> mpto
| MPdot (mp1,l) ->
let mp1' = replace_mp_in_mp mpfrom mpto mp1 in
if mp1==mp1' then mp
else MPdot (mp1',l)
| _ -> mp
let replace_mp_in_con mpfrom mpto kn =
let mp,dir,l = repr_con kn in
let mp'' = replace_mp_in_mp mpfrom mpto mp in
if mp==mp'' then kn
else make_con mp'' dir l
exception BothSubstitutionsAreIdentitySubstitutions
exception ChangeDomain of resolver
let join (subst1 : substitution) (subst2 : substitution) =
let apply_subst (sub : substitution) key (mp,resolve) =
let mp',resolve' =
match subst_mp0 sub mp with
None -> mp, None
| Some (mp',resolve') -> mp',resolve' in
let resolve'' : resolver option =
try
let res =
match resolve with
|None -> begin
match resolve' with
None -> raise BothSubstitutionsAreIdentitySubstitutions
| Some res -> raise (ChangeDomain res) end
| Some res -> res
in
Some
(List.map
(fun (kn,topt) ->
kn,
match topt with
None ->
(match key with
MSI msid ->
let kn' = replace_mp_in_con (MPself msid) mp kn in
apply_opt_resolver resolve' kn'
| MBI mbid ->
let kn' = replace_mp_in_con (MPbound mbid) mp kn in
apply_opt_resolver resolve' kn'
| MPI mp1 ->
let kn' = replace_mp_in_con mp1 mp kn in
apply_opt_resolver resolve' kn')
| Some t -> Some (subst_mps sub t)) res)
with
BothSubstitutionsAreIdentitySubstitutions -> None
| ChangeDomain res ->
let rec changeDom = function
| [] -> []
| (kn,topt)::r ->
let key' =
match key with
MSI msid -> MPself msid
| MBI mbid -> MPbound mbid
| MPI mp1 -> mp1 in
let kn' = replace_mp_in_con mp key' kn in
if kn==kn' then
(*the key does not appear in kn, we remove it
from the resolver that we are building*)
changeDom r
else
(kn',topt)::(changeDom r)
in
Some (changeDom res)
in
mp',resolve'' in
let subst = Umap.mapi (apply_subst subst2) subst1 in
(Umap.fold Umap.add subst2 subst)
let subst_key subst1 subst2 =
let replace_in_key key (mp,resolve) sub=
let newkey =
match key with
| MPI mp1 ->
begin
match subst_mp0 subst1 mp1 with
| None -> None
| Some (mp2,_) -> Some (MPI mp2)
end
| _ -> None
in
match newkey with
| None -> Umap.add key (mp,resolve) sub
| Some mpi -> Umap.add mpi (mp,resolve) sub
in
Umap.fold replace_in_key subst2 empty_subst
let update_subst_alias subst1 subst2 =
let subst_inv key (mp,resolve) sub =
let newmp =
match key with
| MBI msid -> MPbound msid
| MSI msid -> MPself msid
| MPI mp -> mp
in
match mp with
| MPbound mbid -> Umap.add (MBI mbid) (newmp,None) sub
| MPself msid -> Umap.add (MSI msid) (newmp,None) sub
| _ -> Umap.add (MPI mp) (newmp,None) sub
in
let subst_mbi = Umap.fold subst_inv subst2 empty_subst in
let alias_subst key (mp,resolve) sub=
let newkey =
match key with
| MPI mp1 ->
begin
match subst_mp0 subst_mbi mp1 with
| None -> None
| Some (mp2,_) -> Some (MPI mp2)
end
| _ -> None
in
match newkey with
| None -> Umap.add key (mp,resolve) sub
| Some mpi -> Umap.add mpi (mp,resolve) sub
in
Umap.fold alias_subst subst1 empty_subst
let update_subst subst1 subst2 =
let subst_inv key (mp,resolve) l =
let newmp =
match key with
| MBI msid -> MPbound msid
| MSI msid -> MPself msid
| MPI mp -> mp
in
match mp with
| MPbound mbid -> ((MBI mbid),newmp,resolve)::l
| MPself msid -> ((MSI msid),newmp,resolve)::l
| _ -> ((MPI mp),newmp,resolve)::l
in
let subst_mbi = Umap.fold subst_inv subst2 [] in
let alias_subst key (mp,resolve) sub=
let newsetkey =
match key with
| MPI mp1 ->
let compute_set_newkey l (k,mp',resolve) =
let mp_from_key = match k with
| MBI msid -> MPbound msid
| MSI msid -> MPself msid
| MPI mp -> mp
in
let new_mp1 = replace_mp_in_mp mp_from_key mp' mp1 in
if new_mp1 == mp1 then l else (MPI new_mp1,resolve)::l
in
begin
match List.fold_left compute_set_newkey [] subst_mbi with
| [] -> None
| l -> Some (l)
end
| _ -> None
in
match newsetkey with
| None -> sub
| Some l ->
List.fold_left (fun s (k,r) -> Umap.add k (mp,r) s)
sub l
in
Umap.fold alias_subst subst1 empty_subst
let join_alias (subst1 : substitution) (subst2 : substitution) =
let apply_subst (sub : substitution) key (mp,resolve) =
let mp',resolve' =
match subst_mp0 sub mp with
None -> mp, None
| Some (mp',resolve') -> mp',resolve' in
let resolve'' : resolver option =
try
let res =
match resolve with
Some res -> res
| None ->
match resolve' with
None -> raise BothSubstitutionsAreIdentitySubstitutions
| Some res -> raise (ChangeDomain res)
in
Some
(List.map
(fun (kn,topt) ->
kn,
match topt with
None ->
(match key with
MSI msid ->
let kn' = replace_mp_in_con (MPself msid) mp kn in
apply_opt_resolver resolve' kn'
| MBI mbid ->
let kn' = replace_mp_in_con (MPbound mbid) mp kn in
apply_opt_resolver resolve' kn'
| MPI mp1 ->
let kn' = replace_mp_in_con mp1 mp kn in
apply_opt_resolver resolve' kn')
| Some t -> Some (subst_mps sub t)) res)
with
BothSubstitutionsAreIdentitySubstitutions -> None
| ChangeDomain res ->
let rec changeDom = function
| [] -> []
| (kn,topt)::r ->
let key' =
match key with
MSI msid -> MPself msid
| MBI mbid -> MPbound mbid
| MPI mp1 -> mp1 in
let kn' = replace_mp_in_con mp key' kn in
if kn==kn' then
(*the key does not appear in kn, we remove it
from the resolver that we are building*)
changeDom r
else
(kn',topt)::(changeDom r)
in
Some (changeDom res)
in
mp',resolve'' in
Umap.mapi (apply_subst subst2) subst1
let remove_alias subst =
let rec remove key (mp,resolve) sub =
match key with
MPI _ -> sub
| _ -> Umap.add key (mp,resolve) sub
in
Umap.fold remove subst empty_subst
let rec occur_in_path uid path =
match uid,path with
| MSI sid,MPself sid' -> sid = sid'
| MBI bid,MPbound bid' -> bid = bid'
| _,MPdot (mp1,_) -> occur_in_path uid mp1
| _ -> false
let occur_uid uid sub =
let check_one uid' (mp,_) =
if uid = uid' || occur_in_path uid mp then raise Exit
in
try
Umap.iter check_one sub;
false
with Exit -> true
let occur_msid uid = occur_uid (MSI uid)
let occur_mbid uid = occur_uid (MBI uid)
type 'a lazy_subst =
| LSval of 'a
| LSlazy of substitution * 'a
type 'a substituted = 'a lazy_subst ref
let from_val a = ref (LSval a)
let force fsubst r =
match !r with
| LSval a -> a
| LSlazy(s,a) ->
let a' = fsubst s a in
r := LSval a';
a'
let subst_substituted s r =
match !r with
| LSval a -> ref (LSlazy(s,a))
| LSlazy(s',a) ->
let s'' = join s' s in
ref (LSlazy(s'',a))
|