1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: term.mli 11309 2008-08-06 10:30:35Z herbelin $ i*)
(*i*)
open Names
(*i*)
(*s The sorts of CCI. *)
type contents = Pos | Null
type sorts =
| Prop of contents (* Prop and Set *)
| Type of Univ.universe (* Type *)
val set_sort : sorts
val prop_sort : sorts
val type1_sort : sorts
(*s The sorts family of CCI. *)
type sorts_family = InProp | InSet | InType
val family_of_sort : sorts -> sorts_family
(*s Useful types *)
(*s Existential variables *)
type existential_key = int
(*s Existential variables *)
type metavariable = int
(*s Case annotation *)
type case_style = LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle
type case_printing =
{ ind_nargs : int; (* number of real args of the inductive type *)
style : case_style }
(* the integer is the number of real args, needed for reduction *)
type case_info =
{ ci_ind : inductive;
ci_npar : int;
ci_cstr_nargs : int array; (* number of real args of each constructor *)
ci_pp_info : case_printing (* not interpreted by the kernel *)
}
(*s*******************************************************************)
(* The type of constructions *)
type constr
(* [eq_constr a b] is true if [a] equals [b] modulo alpha, casts,
and application grouping *)
val eq_constr : constr -> constr -> bool
(* [types] is the same as [constr] but is intended to be used for
documentation to indicate that such or such function specifically works
with {\em types} (i.e. terms of type a sort).
(Rem:plurial form since [type] is a reserved ML keyword) *)
type types = constr
(*s Functions for dealing with constr terms.
The following functions are intended to simplify and to uniform the
manipulation of terms. Some of these functions may be overlapped with
previous ones. *)
(*s Term constructors. *)
(* Constructs a DeBrujin index (DB indices begin at 1) *)
val mkRel : int -> constr
(* Constructs a Variable *)
val mkVar : identifier -> constr
(* Constructs an patvar named "?n" *)
val mkMeta : metavariable -> constr
(* Constructs an existential variable *)
type existential = existential_key * constr array
val mkEvar : existential -> constr
(* Construct a sort *)
val mkSort : sorts -> types
val mkProp : types
val mkSet : types
val mkType : Univ.universe -> types
(* This defines the strategy to use for verifiying a Cast *)
type cast_kind = VMcast | DEFAULTcast
(* Constructs the term [t1::t2], i.e. the term $t_1$ casted with the
type $t_2$ (that means t2 is declared as the type of t1). *)
val mkCast : constr * cast_kind * constr -> constr
(* Constructs the product [(x:t1)t2] *)
val mkProd : name * types * types -> types
val mkNamedProd : identifier -> types -> types -> types
(* non-dependant product $t_1 \rightarrow t_2$, an alias for
[(_:t1)t2]. Beware $t_2$ is NOT lifted.
Eg: A |- A->A is built by [(mkArrow (mkRel 0) (mkRel 1))] *)
val mkArrow : types -> types -> constr
(* Constructs the abstraction $[x:t_1]t_2$ *)
val mkLambda : name * types * constr -> constr
val mkNamedLambda : identifier -> types -> constr -> constr
(* Constructs the product [let x = t1 : t2 in t3] *)
val mkLetIn : name * constr * types * constr -> constr
val mkNamedLetIn : identifier -> constr -> types -> constr -> constr
(* [mkApp (f,[| t_1; ...; t_n |]] constructs the application
$(f~t_1~\dots~t_n)$. *)
val mkApp : constr * constr array -> constr
(* Constructs a constant *)
(* The array of terms correspond to the variables introduced in the section *)
val mkConst : constant -> constr
(* Inductive types *)
(* Constructs the ith (co)inductive type of the block named kn *)
(* The array of terms correspond to the variables introduced in the section *)
val mkInd : inductive -> constr
(* Constructs the jth constructor of the ith (co)inductive type of the
block named kn. The array of terms correspond to the variables
introduced in the section *)
val mkConstruct : constructor -> constr
(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
val mkCase : case_info * constr * constr * constr array -> constr
(* If [recindxs = [|i1,...in|]]
[funnames = [|f1,.....fn|]]
[typarray = [|t1,...tn|]]
[bodies = [|b1,.....bn|]]
then [ mkFix ((recindxs,i), funnames, typarray, bodies) ]
constructs the $i$th function of the block (counting from 0)
[Fixpoint f1 [ctx1] = b1
with f2 [ctx2] = b2
...
with fn [ctxn] = bn.]
\noindent where the length of the $j$th context is $ij$.
*)
type rec_declaration = name array * types array * constr array
type fixpoint = (int array * int) * rec_declaration
val mkFix : fixpoint -> constr
(* If [funnames = [|f1,.....fn|]]
[typarray = [|t1,...tn|]]
[bodies = [b1,.....bn]] \par\noindent
then [mkCoFix (i, (typsarray, funnames, bodies))]
constructs the ith function of the block
[CoFixpoint f1 = b1
with f2 = b2
...
with fn = bn.]
*)
type cofixpoint = int * rec_declaration
val mkCoFix : cofixpoint -> constr
(*s Concrete type for making pattern-matching. *)
(* [constr array] is an instance matching definitional [named_context] in
the same order (i.e. last argument first) *)
type 'constr pexistential = existential_key * 'constr array
type ('constr, 'types) prec_declaration =
name array * 'types array * 'constr array
type ('constr, 'types) pfixpoint =
(int array * int) * ('constr, 'types) prec_declaration
type ('constr, 'types) pcofixpoint =
int * ('constr, 'types) prec_declaration
type ('constr, 'types) kind_of_term =
| Rel of int
| Var of identifier
| Meta of metavariable
| Evar of 'constr pexistential
| Sort of sorts
| Cast of 'constr * cast_kind * 'types
| Prod of name * 'types * 'types
| Lambda of name * 'types * 'constr
| LetIn of name * 'constr * 'types * 'constr
| App of 'constr * 'constr array
| Const of constant
| Ind of inductive
| Construct of constructor
| Case of case_info * 'constr * 'constr * 'constr array
| Fix of ('constr, 'types) pfixpoint
| CoFix of ('constr, 'types) pcofixpoint
(* User view of [constr]. For [App], it is ensured there is at
least one argument and the function is not itself an applicative
term *)
val kind_of_term : constr -> (constr, types) kind_of_term
(* Experimental *)
type ('constr, 'types) kind_of_type =
| SortType of sorts
| CastType of 'types * 'types
| ProdType of name * 'types * 'types
| LetInType of name * 'constr * 'types * 'types
| AtomicType of 'constr * 'constr array
val kind_of_type : types -> (constr, types) kind_of_type
(*s Simple term case analysis. *)
val isRel : constr -> bool
val isVar : constr -> bool
val isInd : constr -> bool
val isEvar : constr -> bool
val isMeta : constr -> bool
val isSort : constr -> bool
val isCast : constr -> bool
val isApp : constr -> bool
val isLambda : constr -> bool
val isLetIn : constr -> bool
val isProd : constr -> bool
val isConst : constr -> bool
val isConstruct : constr -> bool
val isFix : constr -> bool
val isCoFix : constr -> bool
val isCase : constr -> bool
val is_Prop : constr -> bool
val is_Set : constr -> bool
val isprop : constr -> bool
val is_Type : constr -> bool
val iskind : constr -> bool
val is_small : sorts -> bool
(*s Term destructors.
Destructor operations are partial functions and
raise [invalid_arg "dest*"] if the term has not the expected form. *)
(* Destructs a DeBrujin index *)
val destRel : constr -> int
(* Destructs an existential variable *)
val destMeta : constr -> metavariable
(* Destructs a variable *)
val destVar : constr -> identifier
(* Destructs a sort. [is_Prop] recognizes the sort \textsf{Prop}, whether
[isprop] recognizes both \textsf{Prop} and \textsf{Set}. *)
val destSort : constr -> sorts
(* Destructs a casted term *)
val destCast : constr -> constr * cast_kind * constr
(* Destructs the product $(x:t_1)t_2$ *)
val destProd : types -> name * types * types
(* Destructs the abstraction $[x:t_1]t_2$ *)
val destLambda : constr -> name * types * constr
(* Destructs the let $[x:=b:t_1]t_2$ *)
val destLetIn : constr -> name * constr * types * constr
(* Destructs an application *)
val destApp : constr -> constr * constr array
(* Obsolete synonym of destApp *)
val destApplication : constr -> constr * constr array
(* Decompose any term as an applicative term; the list of args can be empty *)
val decompose_app : constr -> constr * constr list
(* Destructs a constant *)
val destConst : constr -> constant
(* Destructs an existential variable *)
val destEvar : constr -> existential
(* Destructs a (co)inductive type *)
val destInd : constr -> inductive
(* Destructs a constructor *)
val destConstruct : constr -> constructor
(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *)
val destCase : constr -> case_info * constr * constr * constr array
(* Destructs the $i$th function of the block
$\mathit{Fixpoint} ~ f_1 ~ [ctx_1] = b_1
\mathit{with} ~ f_2 ~ [ctx_2] = b_2
\dots
\mathit{with} ~ f_n ~ [ctx_n] = b_n$,
where the lenght of the $j$th context is $ij$.
*)
val destFix : constr -> fixpoint
val destCoFix : constr -> cofixpoint
(*s A {\em declaration} has the form (name,body,type). It is either an
{\em assumption} if [body=None] or a {\em definition} if
[body=Some actualbody]. It is referred by {\em name} if [na] is an
identifier or by {\em relative index} if [na] is not an identifier
(in the latter case, [na] is of type [name] but just for printing
purpose *)
type named_declaration = identifier * constr option * types
type rel_declaration = name * constr option * types
val map_named_declaration :
(constr -> constr) -> named_declaration -> named_declaration
val map_rel_declaration :
(constr -> constr) -> rel_declaration -> rel_declaration
val fold_named_declaration :
(constr -> 'a -> 'a) -> named_declaration -> 'a -> 'a
val fold_rel_declaration :
(constr -> 'a -> 'a) -> rel_declaration -> 'a -> 'a
(* Constructs either [(x:t)c] or [[x=b:t]c] *)
val mkProd_or_LetIn : rel_declaration -> types -> types
val mkNamedProd_or_LetIn : named_declaration -> types -> types
val mkNamedProd_wo_LetIn : named_declaration -> types -> types
(* Constructs either [[x:t]c] or [[x=b:t]c] *)
val mkLambda_or_LetIn : rel_declaration -> constr -> constr
val mkNamedLambda_or_LetIn : named_declaration -> constr -> constr
(*s Other term constructors. *)
val abs_implicit : constr -> constr
val lambda_implicit : constr -> constr
val lambda_implicit_lift : int -> constr -> constr
(* [applist (f,args)] and co work as [mkApp] *)
val applist : constr * constr list -> constr
val applistc : constr -> constr list -> constr
val appvect : constr * constr array -> constr
val appvectc : constr -> constr array -> constr
(* [prodn n l b] = $(x_1:T_1)..(x_n:T_n)b$
where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *)
val prodn : int -> (name * constr) list -> constr -> constr
(* [compose_prod l b] = $(x_1:T_1)..(x_n:T_n)b$
where $l = [(x_n,T_n);\dots;(x_1,T_1)]$.
Inverse of [decompose_prod]. *)
val compose_prod : (name * constr) list -> constr -> constr
(* [lamn n l b] = $[x_1:T_1]..[x_n:T_n]b$
where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *)
val lamn : int -> (name * constr) list -> constr -> constr
(* [compose_lam l b] = $[x_1:T_1]..[x_n:T_n]b$
where $l = [(x_n,T_n);\dots;(x_1,T_1)]$.
Inverse of [decompose_lam] *)
val compose_lam : (name * constr) list -> constr -> constr
(* [to_lambda n l]
= $[x_1:T_1]...[x_n:T_n]T$
where $l = (x_1:T_1)...(x_n:T_n)T$ *)
val to_lambda : int -> constr -> constr
(* [to_prod n l]
= $(x_1:T_1)...(x_n:T_n)T$
where $l = [x_1:T_1]...[x_n:T_n]T$ *)
val to_prod : int -> constr -> constr
(* pseudo-reduction rule *)
(* [prod_appvect] $(x1:B1;...;xn:Bn)B a1...an \rightarrow B[a1...an]$ *)
val prod_appvect : constr -> constr array -> constr
val prod_applist : constr -> constr list -> constr
(*s Other term destructors. *)
(* Transforms a product term $(x_1:T_1)..(x_n:T_n)T$ into the pair
$([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a product.
It includes also local definitions *)
val decompose_prod : constr -> (name*constr) list * constr
(* Transforms a lambda term $[x_1:T_1]..[x_n:T_n]T$ into the pair
$([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a lambda. *)
val decompose_lam : constr -> (name*constr) list * constr
(* Given a positive integer n, transforms a product term
$(x_1:T_1)..(x_n:T_n)T$
into the pair $([(xn,Tn);...;(x1,T1)],T)$. *)
val decompose_prod_n : int -> constr -> (name * constr) list * constr
(* Given a positive integer $n$, transforms a lambda term
$[x_1:T_1]..[x_n:T_n]T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$ *)
val decompose_lam_n : int -> constr -> (name * constr) list * constr
(* [nb_lam] $[x_1:T_1]...[x_n:T_n]c$ where $c$ is not an abstraction
gives $n$ (casts are ignored) *)
val nb_lam : constr -> int
(* similar to [nb_lam], but gives the number of products instead *)
val nb_prod : constr -> int
(* flattens application lists *)
val collapse_appl : constr -> constr
(* Removes recursively the casts around a term i.e.
[strip_outer_cast] (Cast (Cast ... (Cast c, t) ... ))] is [c]. *)
val strip_outer_cast : constr -> constr
(* Apply a function letting Casted types in place *)
val under_casts : (constr -> constr) -> constr -> constr
(* Apply a function under components of Cast if any *)
val under_outer_cast : (constr -> constr) -> constr -> constr
(*s Occur checks *)
(* [closedn n M] is true iff [M] is a (deBruijn) closed term under n binders *)
val closedn : int -> constr -> bool
(* [closed0 M] is true iff [M] is a (deBruijn) closed term *)
val closed0 : constr -> bool
(* [noccurn n M] returns true iff [Rel n] does NOT occur in term [M] *)
val noccurn : int -> constr -> bool
(* [noccur_between n m M] returns true iff [Rel p] does NOT occur in term [M]
for n <= p < n+m *)
val noccur_between : int -> int -> constr -> bool
(* Checking function for terms containing existential- or
meta-variables. The function [noccur_with_meta] does not consider
meta-variables applied to some terms (intented to be its local
context) (for existential variables, it is necessarily the case) *)
val noccur_with_meta : int -> int -> constr -> bool
(*s Relocation and substitution *)
(* [exliftn el c] lifts [c] with lifting [el] *)
val exliftn : Esubst.lift -> constr -> constr
(* [liftn n k c] lifts by [n] indexes above or equal to [k] in [c] *)
val liftn : int -> int -> constr -> constr
(* [lift n c] lifts by [n] the positive indexes in [c] *)
val lift : int -> constr -> constr
(* [substnl [a1;...;an] k c] substitutes in parallel [a1],...,[an]
for respectively [Rel(k+1)],...,[Rel(k+n)] in [c]; it relocates
accordingly indexes in [a1],...,[an] *)
val substnl : constr list -> int -> constr -> constr
val substl : constr list -> constr -> constr
val subst1 : constr -> constr -> constr
val substnl_decl : constr list -> int -> rel_declaration -> rel_declaration
val substl_decl : constr list -> rel_declaration -> rel_declaration
val subst1_decl : constr -> rel_declaration -> rel_declaration
val subst1_named_decl : constr -> named_declaration -> named_declaration
val substl_named_decl : constr list -> named_declaration -> named_declaration
val replace_vars : (identifier * constr) list -> constr -> constr
val subst_var : identifier -> constr -> constr
(* [subst_vars [id1;...;idn] t] substitute [VAR idj] by [Rel j] in [t]
if two names are identical, the one of least indice is kept *)
val subst_vars : identifier list -> constr -> constr
(* [substn_vars n [id1;...;idn] t] substitute [VAR idj] by [Rel j+n-1] in [t]
if two names are identical, the one of least indice is kept *)
val substn_vars : int -> identifier list -> constr -> constr
(*s Functionals working on the immediate subterm of a construction *)
(* [fold_constr f acc c] folds [f] on the immediate subterms of [c]
starting from [acc] and proceeding from left to right according to
the usual representation of the constructions; it is not recursive *)
val fold_constr : ('a -> constr -> 'a) -> 'a -> constr -> 'a
(* [map_constr f c] maps [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
val map_constr : (constr -> constr) -> constr -> constr
(* [map_constr_with_binders g f n c] maps [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val map_constr_with_binders :
('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr
(* [iter_constr f c] iters [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
val iter_constr : (constr -> unit) -> constr -> unit
(* [iter_constr_with_binders g f n c] iters [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val iter_constr_with_binders :
('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit
(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
the immediate subterms of [c1] of [c2] if needed; Cast's, binders
name and Cases annotations are not taken into account *)
val compare_constr : (constr -> constr -> bool) -> constr -> constr -> bool
(*********************************************************************)
val hcons_constr:
(constant -> constant) *
(kernel_name -> kernel_name) *
(dir_path -> dir_path) *
(name -> name) *
(identifier -> identifier) *
(string -> string)
->
(constr -> constr) *
(types -> types)
val hcons1_constr : constr -> constr
val hcons1_types : types -> types
(**************************************)
type values
|