1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: g_intsyntax.ml 12509 2009-11-12 15:52:50Z letouzey $ i*)
(* digit-based syntax for int31, bigN bigZ and bigQ *)
open Bigint
open Libnames
open Rawterm
(*** Constants for locating the int31 and bigN ***)
let make_dir l = Names.make_dirpath (List.map Names.id_of_string (List.rev l))
let make_path dir id = Libnames.make_path (make_dir dir) (Names.id_of_string id)
(* copied on g_zsyntax.ml, where it is said to be a temporary hack*)
(* takes a path an identifier in the form of a string list and a string,
returns a kernel_name *)
let make_kn dir id = Libnames.encode_kn (make_dir dir) (Names.id_of_string id)
(* int31 stuff *)
let int31_module = ["Coq"; "Numbers"; "Cyclic"; "Int31"; "Int31"]
let int31_path = make_path int31_module "int31"
let int31_id = make_kn int31_module
let int31_scope = "int31_scope"
let int31_construct = ConstructRef ((int31_id "int31",0),1)
let int31_0 = ConstructRef ((int31_id "digits",0),1)
let int31_1 = ConstructRef ((int31_id "digits",0),2)
(* bigN stuff*)
let zn2z_module = ["Coq"; "Numbers"; "Cyclic"; "DoubleCyclic"; "DoubleType"]
let zn2z_path = make_path zn2z_module "zn2z"
let zn2z_id = make_kn zn2z_module
let zn2z_W0 = ConstructRef ((zn2z_id "zn2z",0),1)
let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2)
let bigN_module = ["Coq"; "Numbers"; "Natural"; "BigN"; "BigN" ]
let bigN_path = make_path (bigN_module@["BigN"]) "t"
(* big ugly hack *)
let bigN_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigN_module)),
Names.mk_label "BigN")),
[], Names.id_of_string id) : Names.kernel_name)
let bigN_scope = "bigN_scope"
(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *)
let n_inlined = of_string "7"
let bigN_constructor =
(* converts a bigint into an int the ugly way *)
let rec to_int i =
if equal i zero then
0
else
let (quo,rem) = div2_with_rest i in
if rem then
2*(to_int quo)+1
else
2*(to_int quo)
in
fun i ->
ConstructRef ((bigN_id "t_",0),
if less_than i n_inlined then
(to_int i)+1
else
(to_int n_inlined)+1
)
(*bigZ stuff*)
let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ]
let bigZ_path = make_path (bigZ_module@["BigZ"]) "t"
(* big ugly hack bis *)
let bigZ_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigZ_module)),
Names.mk_label "BigZ")),
[], Names.id_of_string id) : Names.kernel_name)
let bigZ_scope = "bigZ_scope"
let bigZ_pos = ConstructRef ((bigZ_id "t_",0),1)
let bigZ_neg = ConstructRef ((bigZ_id "t_",0),2)
(*bigQ stuff*)
let bigQ_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "BigQ"]
let qmake_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "QMake"]
let bigQ_path = make_path (bigQ_module@["BigQ"]) "t"
(* big ugly hack bis *)
let bigQ_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigQ_module)),
Names.mk_label "BigQ")),
[], Names.id_of_string id) : Names.kernel_name)
let bigQ_scope = "bigQ_scope"
let bigQ_z = ConstructRef ((bigQ_id "t_",0),1)
(*** Definition of the Non_closed exception, used in the pretty printing ***)
exception Non_closed
(*** Parsing for int31 in digital notation ***)
(* parses a *non-negative* integer (from bigint.ml) into an int31
wraps modulo 2^31 *)
let int31_of_pos_bigint dloc n =
let ref_construct = RRef (dloc, int31_construct) in
let ref_0 = RRef (dloc, int31_0) in
let ref_1 = RRef (dloc, int31_1) in
let rec args counter n =
if counter <= 0 then
[]
else
let (q,r) = div2_with_rest n in
(if r then ref_1 else ref_0)::(args (counter-1) q)
in
RApp (dloc, ref_construct, List.rev (args 31 n))
let error_negative dloc =
Util.user_err_loc (dloc, "interp_int31", Pp.str "int31 are only non-negative numbers.")
let interp_int31 dloc n =
if is_pos_or_zero n then
int31_of_pos_bigint dloc n
else
error_negative dloc
(* Pretty prints an int31 *)
let bigint_of_int31 =
let rec args_parsing args cur =
match args with
| [] -> cur
| (RRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur)
| (RRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur))
| _ -> raise Non_closed
in
function
| RApp (_, RRef (_, c), args) when c=int31_construct -> args_parsing args zero
| _ -> raise Non_closed
let uninterp_int31 i =
try
Some (bigint_of_int31 i)
with Non_closed ->
None
(* Actually declares the interpreter for int31 *)
let _ = Notation.declare_numeral_interpreter int31_scope
(int31_path, int31_module)
interp_int31
([RRef (Util.dummy_loc, int31_construct)],
uninterp_int31,
true)
(*** Parsing for bigN in digital notation ***)
(* the base for bigN (in Coq) that is 2^31 in our case *)
let base = pow two (of_string "31")
(* base of the bigN of height N : *)
let rank n = pow base (pow two n)
(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored
it is expected to be used only when the quotient would also need 2^n int31 to be
stored *)
let split_at n bi =
euclid bi (rank (sub_1 n))
(* search the height of the Coq bigint needed to represent the integer bi *)
let height bi =
let rec height_aux n =
if less_than bi (rank n) then
n
else
height_aux (add_1 n)
in
height_aux zero
(* n must be a non-negative integer (from bigint.ml) *)
let word_of_pos_bigint dloc hght n =
let ref_W0 = RRef (dloc, zn2z_W0) in
let ref_WW = RRef (dloc, zn2z_WW) in
let rec decomp hgt n =
if is_neg_or_zero hgt then
int31_of_pos_bigint dloc n
else if equal n zero then
RApp (dloc, ref_W0, [RHole (dloc, Evd.InternalHole)])
else
let (h,l) = split_at hgt n in
RApp (dloc, ref_WW, [RHole (dloc, Evd.InternalHole);
decomp (sub_1 hgt) h;
decomp (sub_1 hgt) l])
in
decomp hght n
let bigN_of_pos_bigint dloc n =
let ref_constructor i = RRef (dloc, bigN_constructor i) in
let result h word = RApp (dloc, ref_constructor h, if less_than h n_inlined then
[word]
else
[G_natsyntax.nat_of_int dloc (sub h n_inlined);
word])
in
let hght = height n in
result hght (word_of_pos_bigint dloc hght n)
let bigN_error_negative dloc =
Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers.")
let interp_bigN dloc n =
if is_pos_or_zero n then
bigN_of_pos_bigint dloc n
else
bigN_error_negative dloc
(* Pretty prints a bigN *)
let bigint_of_word =
let rec get_height rc =
match rc with
| RApp (_,RRef(_,c), [_;lft;rght]) when c = zn2z_WW ->
let hleft = get_height lft in
let hright = get_height rght in
add_1
(if less_than hleft hright then
hright
else
hleft)
| _ -> zero
in
let rec transform hght rc =
match rc with
| RApp (_,RRef(_,c),_) when c = zn2z_W0-> zero
| RApp (_,RRef(_,c), [_;lft;rght]) when c=zn2z_WW-> let new_hght = sub_1 hght in
add (mult (rank new_hght)
(transform (new_hght) lft))
(transform (new_hght) rght)
| _ -> bigint_of_int31 rc
in
fun rc ->
let hght = get_height rc in
transform hght rc
let bigint_of_bigN rc =
match rc with
| RApp (_,_,[one_arg]) -> bigint_of_word one_arg
| RApp (_,_,[_;second_arg]) -> bigint_of_word second_arg
| _ -> raise Non_closed
let uninterp_bigN rc =
try
Some (bigint_of_bigN rc)
with Non_closed ->
None
(* declare the list of constructors of bigN used in the declaration of the
numeral interpreter *)
let bigN_list_of_constructors =
let rec build i =
if less_than i (add_1 n_inlined) then
RRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i))
else
[]
in
build zero
(* Actually declares the interpreter for bigN *)
let _ = Notation.declare_numeral_interpreter bigN_scope
(bigN_path, bigN_module)
interp_bigN
(bigN_list_of_constructors,
uninterp_bigN,
true)
(*** Parsing for bigZ in digital notation ***)
let interp_bigZ dloc n =
let ref_pos = RRef (dloc, bigZ_pos) in
let ref_neg = RRef (dloc, bigZ_neg) in
if is_pos_or_zero n then
RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])
else
RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])
(* pretty printing functions for bigZ *)
let bigint_of_bigZ = function
| RApp (_, RRef(_,c), [one_arg]) when c = bigZ_pos -> bigint_of_bigN one_arg
| RApp (_, RRef(_,c), [one_arg]) when c = bigZ_neg ->
let opp_val = bigint_of_bigN one_arg in
if equal opp_val zero then
raise Non_closed
else
neg opp_val
| _ -> raise Non_closed
let uninterp_bigZ rc =
try
Some (bigint_of_bigZ rc)
with Non_closed ->
None
(* Actually declares the interpreter for bigN *)
let _ = Notation.declare_numeral_interpreter bigZ_scope
(bigZ_path, bigZ_module)
interp_bigZ
([RRef (Util.dummy_loc, bigZ_pos);
RRef (Util.dummy_loc, bigZ_neg)],
uninterp_bigZ,
true)
(*** Parsing for bigQ in digital notation ***)
let interp_bigQ dloc n =
let ref_z = RRef (dloc, bigQ_z) in
let ref_pos = RRef (dloc, bigZ_pos) in
let ref_neg = RRef (dloc, bigZ_neg) in
if is_pos_or_zero n then
RApp (dloc, ref_z,
[RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])])
else
RApp (dloc, ref_z,
[RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])])
let uninterp_bigQ rc = None
(* Actually declares the interpreter for bigQ *)
let _ = Notation.declare_numeral_interpreter bigQ_scope
(bigQ_path, bigQ_module)
interp_bigQ
([], uninterp_bigQ,
true)
|