1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
module Stream = Gramlib.Stream
(** We keep the string to preserve the user representation,
e.g. "e"/"E" or the presence of leading 0s, or the presence of a +
in the exponent *)
type num_class = CDec | CHex
let string_del_head n s = String.sub s n (String.length s - n)
module UnsignedNat =
struct
type t = string
let of_string s =
assert (String.length s > 0);
assert (s.[0] >= '0' && s.[0] <= '9');
s
let to_string s =
String.(map Char.lowercase_ascii (concat "" (split_on_char '_' s)))
let sprint s = s
let print s = Pp.str (sprint s)
let classify s =
if String.length s >= 2 && (s.[1] = 'x' || s.[1] = 'X') then CHex else CDec
(** Comparing two raw numbers (base 10 or 16, big-endian, non-negative).
A bit nasty, but not critical: used e.g. to decide when a number
is considered as large (see threshold warnings in notation.ml). *)
exception Comp of int
let rec compare s s' =
let l = String.length s and l' = String.length s' in
if l < l' then - compare s' s
else
let d = l-l' in
try
for i = 0 to d-1 do if s.[i] != '0' then raise (Comp 1) done;
for i = d to l-1 do
let c = Stdlib.compare s.[i] s'.[i-d] in
if c != 0 then raise (Comp c)
done;
0
with Comp c -> c
let compare n d =
assert (classify d = CDec);
match classify n with
| CDec -> compare (to_string n) (to_string d)
| CHex -> compare (string_del_head 2 (to_string n)) (to_string d)
let is_zero s =
compare s "0" = 0
end
type sign = SPlus | SMinus
type 'a exp = EDec of 'a | EBin of 'a
module SignedNat =
struct
type t = sign * UnsignedNat.t
let of_string s =
assert (String.length s > 0);
let sign,n =
match s.[0] with
| '-' -> (SMinus,string_del_head 1 s)
| '+' -> (SPlus,string_del_head 1 s)
| _ -> (SPlus,s) in
(sign,UnsignedNat.of_string n)
let to_string (sign,n) =
(match sign with SPlus -> "" | SMinus -> "-") ^ UnsignedNat.to_string n
let classify (_,n) = UnsignedNat.classify n
let bigint_of_string (sign,n) = Z.of_string (to_string (sign,n))
let to_bigint n = bigint_of_string n
let string_of_nonneg_bigint c n =
match c with
| CDec -> Z.format "%d" n
| CHex -> Z.format "%#x" n
let of_bigint c n =
let sign, n = if Int.equal (-1) (Z.sign n) then (SMinus, Z.neg n) else (SPlus, n) in
(sign, string_of_nonneg_bigint c n)
end
module Unsigned =
struct
type t = {
int : string;
frac : string;
exp : string
}
(**
- int: \[0-9\]\[0-9_\]*
- frac: empty or \[0-9_\]+
- exp: empty or \[eE\]\[+-\]?\[0-9\]\[0-9_\]*
or
- int: 0\[xX\]\[0-9a-fA-F\]\[0-9a-fA-F_\]*
- frac: empty or \[0-9a-fA-F_\]+
- exp: empty or \[pP\]\[+-\]?\[0-9\]\[0-9_\]* *)
let equal n1 n2 =
String.(equal n1.int n2.int && equal n1.frac n2.frac && equal n1.exp n2.exp)
let parse =
let buff = ref (Bytes.create 80) in
let store len x =
let open Bytes in
if len >= length !buff then
buff := cat !buff (create (length !buff));
set !buff len x;
succ len in
let get_buff len = Bytes.sub_string !buff 0 len in
(* reads [0-9_]* *)
let rec number len s = match Stream.peek () s with
| Some ('0'..'9' as c) -> Stream.junk () s; number (store len c) s
| Some ('_' as c) when len > 0 -> Stream.junk () s; number (store len c) s
| _ -> len in
(* reads [0-9a-fA-F_]* *)
let rec hex_number len s = match Stream.peek () s with
| Some (('0'..'9' | 'a'..'f' | 'A'..'F') as c) ->
Stream.junk () s; hex_number (store len c) s
| Some ('_' as c) when len > 0 ->
Stream.junk () s; hex_number (store len c) s
| _ -> len in
fun s ->
let hex, i =
match Stream.npeek () 3 s with
| '0' :: (('x' | 'X') as x) :: (('0'..'9' | 'a'..'f' | 'A'..'F') as c) :: _ ->
Stream.junk () s; Stream.junk () s; Stream.junk () s;
true, get_buff (hex_number (store (store (store 0 '0') x) c) s)
| _ -> false, get_buff (number 0 s) in
assert (i <> "");
let f =
match hex, Stream.npeek () 2 s with
| true, '.' :: (('0'..'9' | 'a'..'f' | 'A'..'F' | '_') as c) :: _ ->
Stream.junk () s; Stream.junk () s; get_buff (hex_number (store 0 c) s)
| false, '.' :: (('0'..'9' | '_') as c) :: _ ->
Stream.junk () s; Stream.junk () s; get_buff (number (store 0 c) s)
| _ -> "" in
let e =
match hex, Stream.npeek () 2 s with
| true, (('p'|'P') as e) :: ('0'..'9' as c) :: _
| false, (('e'|'E') as e) :: ('0'..'9' as c) :: _ ->
Stream.junk () s; Stream.junk () s; get_buff (number (store (store 0 e) c) s)
| true, (('p'|'P') as e) :: (('+'|'-') as sign) :: _
| false, (('e'|'E') as e) :: (('+'|'-') as sign) :: _ ->
begin match Stream.npeek () 3 s with
| _ :: _ :: ('0'..'9' as c) :: _ ->
Stream.junk () s; Stream.junk () s; Stream.junk () s;
get_buff (number (store (store (store 0 e) sign) c) s)
| _ -> ""
end
| _ -> "" in
{ int = i; frac = f; exp = e }
let sprint n =
n.int ^ (if n.frac = "" then "" else "." ^ n.frac) ^ n.exp
let print n =
Pp.str (sprint n)
let parse_string s =
if s = "" || s.[0] < '0' || s.[0] > '9' then None else
let strm = Stream.of_string (s ^ " ") in
let n = parse strm in
if Stream.count strm >= String.length s then Some n else None
let of_string s =
match parse_string s with
| None -> assert false
| Some s -> s
let to_string =
sprint (* We could remove the '_' but not necessary for float_of_string *)
let to_nat = function
| { int = i; frac = ""; exp = "" } -> Some i
| _ -> None
let is_nat = function
| { int = _; frac = ""; exp = "" } -> true
| _ -> false
let classify n = UnsignedNat.classify n.int
end
open Unsigned
module Signed =
struct
type t = sign * Unsigned.t
let equal (s1,n1) (s2,n2) =
s1 = s2 && equal n1 n2
let is_zero = function
| (SPlus,{int;frac;exp}) -> UnsignedNat.is_zero int && UnsignedNat.is_zero frac
| _ -> false
let of_int_frac_and_exponent (sign,int) f e =
assert (match e with None -> true | Some e -> SignedNat.classify e = CDec);
let c = UnsignedNat.classify int in
let exp = match e with None -> "" | Some e ->
let e = SignedNat.to_string e in
match c with CDec -> "e" ^ e | CHex -> "p" ^ e in
let frac = match f with None -> "" | Some f ->
assert (c = UnsignedNat.classify f);
let f = UnsignedNat.to_string f in
match c with CDec -> f | CHex -> string_del_head 2 f in
sign, { int; frac; exp }
let to_int_frac_and_exponent (sign, { int; frac; exp }) =
let e =
if exp = "" then None else
Some (match exp.[1] with
| '-' -> SMinus, string_del_head 2 exp
| '+' -> SPlus, string_del_head 2 exp
| _ -> SPlus, string_del_head 1 exp) in
let f =
if frac = "" then None else
Some (match UnsignedNat.classify int with
| CDec -> frac
| CHex -> "0x" ^ frac) in
(sign, int), f, e
let of_nat i =
(SPlus,{ int = i; frac = ""; exp = "" })
let of_int (s,i) =
(s,{ int = i; frac = ""; exp = "" })
let of_int_string s = of_int (SignedNat.of_string s)
let to_int = function
| (s, { int = i; frac = ""; exp = "" }) -> Some (s,i)
| _ -> None
let is_int n = match to_int n with None -> false | Some _ -> true
let sprint (s,i) =
(match s with SPlus -> "" | SMinus -> "-") ^ Unsigned.sprint i
let print i =
Pp.str (sprint i)
let parse_string s =
if s = "" || s = "-" || s = "+" ||
(s.[0] < '0' || s.[0] > '9') && ((s.[0] <> '-' && s.[0] <> '+') || s.[1] < '0' || s.[1] > '9') then None else
let strm = Stream.of_string (s ^ " ") in
let sign = match s.[0] with
| '-' -> (Stream.junk () strm; SMinus)
| '+' -> (Stream.junk () strm; SPlus)
| _ -> SPlus in
let n = parse strm in
if Stream.count strm >= String.length s then Some (sign,n) else None
let of_string s =
assert (s <> "");
let sign,u = match s.[0] with
| '-' -> (SMinus, string_del_head 1 s)
| '+' -> (SPlus, string_del_head 1 s)
| _ -> (SPlus, s) in
(sign, Unsigned.of_string u)
let to_string (sign,u) =
(match sign with SPlus -> "" | SMinus -> "-") ^ Unsigned.to_string u
let to_bigint = function
| (sign, { int = n; frac = ""; exp = "" }) ->
Some (SignedNat.to_bigint (sign,UnsignedNat.to_string n))
| _ -> None
let of_bigint c n =
of_int (SignedNat.of_bigint c n)
let to_bigint_and_exponent (s, { int; frac; exp }) =
let c = UnsignedNat.classify int in
let int = UnsignedNat.to_string int in
let frac = UnsignedNat.to_string frac in
let i = SignedNat.to_bigint (s, int ^ frac) in
let e =
let e = if exp = "" then Z.zero else match exp.[1] with
| '+' -> Z.of_string (UnsignedNat.to_string (string_del_head 2 exp))
| '-' -> Z.(neg (of_string (UnsignedNat.to_string (string_del_head 2 exp))))
| _ -> Z.of_string (UnsignedNat.to_string (string_del_head 1 exp)) in
let l = String.length frac in
let l = match c with CDec -> l | CHex -> 4 * l in
Z.(sub e (of_int l)) in
(i, match c with CDec -> EDec e | CHex -> EBin e)
let of_bigint_and_exponent i e =
let c = match e with EDec _ -> CDec | EBin _ -> CHex in
let e = match e with EDec e | EBin e -> Some (SignedNat.of_bigint CDec e) in
of_int_frac_and_exponent (SignedNat.of_bigint c i) None e
let is_bigger_int_than (s, { int; frac; exp }) i =
frac = "" && exp = "" && UnsignedNat.compare int i > 0
let classify (_, n) = Unsigned.classify n
end
|