1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/************************************************************************/
/* * The Coq Proof Assistant / The Coq Development Team */
/* v * Copyright INRIA, CNRS and contributors */
/* <O___,, * (see version control and CREDITS file for authors & dates) */
/* \VV/ **************************************************************/
/* // * This file is distributed under the terms of the */
/* * GNU Lesser General Public License Version 2.1 */
/* * (see LICENSE file for the text of the license) */
/************************************************************************/
#define Is_uint63(v) (Is_long(v))
#define uint_of_value(val) (((uint64_t)(val)) >> 1)
#define uint63_of_value(val) ((uint64_t)(val) >> 1)
#define int63_of_value(val) ((int64_t)(val) >> 1)
/* 2^63 * y + x as a value */
//#define Val_intint(x,y) ((value)(((uint64_t)(x)) << 1 + ((uint64_t)(y) << 64)))
#define uint63_zero() ((value) 1) /* 2*0 + 1 */
#define uint63_one() ((value) 3) /* 2*1 + 1 */
#define uint63_eq(x,y) ((x) == (y))
#define Uint63_eq(r,x,y) ((r) = uint63_eq(x,y))
#define Uint63_eq0(r,x) ((r) = ((x) == (uint64_t)1))
#define Uint63_eqm1(r,x) ((r) = ((x) == (uint64_t)(int64_t)(-1)))
#define uint63_lt(x,y) ((uint64_t) (x) < (uint64_t) (y))
#define Uint63_lt(r,x,y) ((r) = uint63_lt(x,y))
#define uint63_leq(x,y) ((uint64_t) (x) <= (uint64_t) (y))
#define Uint63_leq(r,x,y) ((r) = uint63_leq(x,y))
#define uint63_lts(x,y) ((int64_t) (x) < (int64_t) (y))
#define Uint63_lts(r,x,y) ((r) = uint63_lts(x,y))
#define uint63_les(x,y) ((int64_t) (x) <= (int64_t) (y))
#define Uint63_les(r,x,y) ((r) = uint63_les(x,y))
#define Uint63_neg(x) (accu = (value)(2 - (uint64_t) x))
#define Uint63_add(x,y) (accu = (value)((uint64_t) (x) + (uint64_t) (y) - 1))
#define Uint63_addcarry(x,y) (accu = (value)((uint64_t) (x) + (uint64_t) (y) + 1))
#define Uint63_sub(x,y) (accu = (value)((uint64_t) (x) - (uint64_t) (y) + 1))
#define Uint63_subcarry(x,y) (accu = (value)((uint64_t) (x) - (uint64_t) (y) - 1))
#define Uint63_mul(x,y) (accu = Val_long(uint63_of_value(x) * uint63_of_value(y)))
#define Uint63_div(x,y) (accu = Val_long(uint63_of_value(x) / uint63_of_value(y)))
#define Uint63_mod(x,y) (accu = Val_long(uint63_of_value(x) % uint63_of_value(y)))
#define Uint63_divs(x,y) (accu = Val_long(int63_of_value(x) / int63_of_value(y)))
#define Uint63_mods(x,y) (accu = Val_long(int63_of_value(x) % int63_of_value(y)))
#define Uint63_lxor(x,y) (accu = (value)(((uint64_t)(x) ^ (uint64_t)(y)) | 1))
#define Uint63_lor(x,y) (accu = (value)((uint64_t)(x) | (uint64_t)(y)))
#define Uint63_land(x,y) (accu = (value)((uint64_t)(x) & (uint64_t)(y)))
/* TODO: is + or | better? OCAML uses + */
/* TODO: is - or ^ better? */
#define Uint63_lsl(x,y) do{ \
value uint63_lsl_y__ = (y); \
if (uint63_lsl_y__ < (uint64_t) 127) \
accu = (value)((((uint64_t)(x)-1) << uint63_of_value(uint63_lsl_y__)) | 1); \
else \
accu = uint63_zero(); \
}while(0)
#define Uint63_lsr(x,y) do{ \
value uint63_lsl_y__ = (y); \
if (uint63_lsl_y__ < (uint64_t) 127) \
accu = (value)(((uint64_t)(x) >> uint63_of_value(uint63_lsl_y__)) | 1); \
else \
accu = uint63_zero(); \
}while(0)
#define Uint63_asr(x,y) do{ \
value uint63_asr_y__ = (y); \
if (uint63_asr_y__ < (uint64_t) 127) \
accu = (value)(((int64_t)(x) >> uint63_of_value(uint63_asr_y__)) | 1); \
else \
accu = uint63_zero(); \
}while(0)
/* addmuldiv(p,x,y) = x * 2^p + y / 2 ^ (63 - p) */
/* (modulo 2^63) for p <= 63 */
value uint63_addmuldiv(value p, value x, value y) {
uint64_t shiftby = uint63_of_value(p);
if (shiftby >= 64) return uint63_zero();
uint64_t r = ((uint64_t)x - 1) << shiftby;
r |= ((uint64_t)y >> (63-shiftby)) | 1;
return (value)r;
}
#define Uint63_addmuldiv(p, x, y) (accu = uint63_addmuldiv(p, x, y))
value uint63_head0(uint64_t x) {
int r = 0;
if (!(x & 0xFFFFFFFF00000000)) { x <<= 32; r += 32; }
if (!(x & 0xFFFF000000000000)) { x <<= 16; r += 16; }
if (!(x & 0xFF00000000000000)) { x <<= 8; r += 8; }
if (!(x & 0xF000000000000000)) { x <<= 4; r += 4; }
if (!(x & 0xC000000000000000)) { x <<= 2; r += 2; }
if (!(x & 0x8000000000000000)) { x <<=1; r += 1; }
return Val_int(r);
}
#define Uint63_head0(x) (accu = uint63_head0(x))
value uint63_tail0(value x) {
int r = 0;
x = (uint64_t)x >> 1;
if (!(x & 0xFFFFFFFF)) { x >>= 32; r += 32; }
if (!(x & 0x0000FFFF)) { x >>= 16; r += 16; }
if (!(x & 0x000000FF)) { x >>= 8; r += 8; }
if (!(x & 0x0000000F)) { x >>= 4; r += 4; }
if (!(x & 0x00000003)) { x >>= 2; r += 2; }
if (!(x & 0x00000001)) { x >>=1; r += 1; }
return Val_int(r);
}
#define Uint63_tail0(x) (accu = uint63_tail0(x))
value uint63_mulc(value x, value y, value* h) {
x = (uint64_t)x >> 1;
y = (uint64_t)y >> 1;
uint64_t lx = x & 0xFFFFFFFF;
uint64_t ly = y & 0xFFFFFFFF;
uint64_t hx = x >> 32;
uint64_t hy = y >> 32;
uint64_t hr = hx * hy;
uint64_t lr = lx * ly;
lx *= hy;
ly *= hx;
hr += (lx >> 32) + (ly >> 32);
lx <<= 32;
lr += lx;
if (lr < lx) { hr++; }
ly <<= 32;
lr += ly;
if (lr < ly) { hr++; }
hr = (hr << 1) | (lr >> 63);
*h = Val_int(hr);
return Val_int(lr);
}
#define Uint63_mulc(x, y, h) (accu = uint63_mulc(x, y, h))
#define lt128(xh,xl,yh,yl) (uint63_lt(xh,yh) || (uint63_eq(xh,yh) && uint63_lt(xl,yl)))
#define le128(xh,xl,yh,yl) (uint63_lt(xh,yh) || (uint63_eq(xh,yh) && uint63_leq(xl,yl)))
#define maxuint63 ((uint64_t)0x7FFFFFFFFFFFFFFF)
/* precondition: xh < y */
/* outputs r and sets ql to q s.t. x = q * y + r, r < y */
static value uint63_div21_aux(value xh, value xl, value y, value* ql) {
uint64_t nh = uint63_of_value(xh);
uint64_t nl = uint63_of_value(xl);
y = uint63_of_value(y);
uint64_t q = 0;
for (int i = 0; i < 63; ++i) {
// invariants: 0 <= nh < y, nl = (xl*2^i) % 2^64,
// (q*y + nh) * 2^(63-i) + (xl % 2^(63-i)) = (xh%y) * 2^63 + xl
nl <<= 1;
nh = (nh << 1) | (nl >> 63);
q <<= 1;
if (nh >= y) { q |= 1; nh -= y; }
}
*ql = Val_int(q);
return Val_int(nh);
}
value uint63_div21(value xh, value xl, value y, value* ql) {
if (uint63_leq(y, xh)) {
*ql = Val_int(0);
return Val_int(0);
} else {
return uint63_div21_aux(xh, xl, y, ql);
}
}
#define Uint63_div21(xh, xl, y, q) (accu = uint63_div21(xh, xl, y, q))
#define Uint63_to_double(x) Coq_copy_double((double) uint63_of_value(x))
double coq_uint63_to_float(value x) {
return (double) uint63_of_value(x);
}
value coq_uint63_to_float_byte(value x) {
return caml_copy_double(coq_uint63_to_float(x));
}
#define Uint63_of_double(f) do{ \
accu = Val_long((uint64_t)(f)); \
}while(0)
#define Uint63_of_int(x) (accu = (x))
#define Uint63_to_int_min(n, m) do { \
if (uint63_lt((n),(m))) \
accu = (n); \
else \
accu = (m); \
}while(0)
|