1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
/***********************************************************************/
/* */
/* Coq Compiler */
/* */
/* Benjamin Gregoire, projets Logical and Cristal */
/* INRIA Rocquencourt */
/* */
/* */
/***********************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <caml/memory.h>
#include "coq_fix_code.h"
#include "coq_instruct.h"
#include "coq_memory.h"
#include "coq_values.h"
#include <memory.h>
/* KIND OF VALUES */
#define Setup_for_gc
#define Restore_after_gc
#define Is_instruction(c, i) coq_is_instruction(*c, i)
value coq_kind_of_closure(value v) {
opcode_t * c;
int is_app = 0;
c = Code_val(v);
if (Is_instruction(c, GRAB)) return Val_int(0);
if (Is_instruction(c, RESTART)) {is_app = 1; c++;}
if (Is_instruction(c, GRABREC)) return Val_int(1+is_app);
if (Is_instruction(c, MAKEACCU)) return Val_int(3);
return Val_int(0);
}
value coq_is_accumulate_code(value code)
{
code_t q = Code_val(code);
int res;
res = Is_instruction(q,ACCUMULATE);
return Val_bool(res);
}
/* DESTRUCT ACCU */
value coq_closure_arity(value clos) {
opcode_t * c = Code_val(clos);
if (Is_instruction(c,RESTART)) {
c++;
if (Is_instruction(c,GRAB)) return Val_int(4 + c[1] - Wosize_val(clos));
else {
if (Wosize_val(clos) != 3) caml_failwith("Coq Values : coq_closure_arity");
return Val_int(1);
}
}
if (Is_instruction(c,GRAB)) return Val_int(1 + c[1]);
return Val_int(1);
}
/* Fonction sur les fix */
value coq_current_fix(value v) {
if (Tag_val(v) == Closure_tag) return Val_int(0);
else return Val_long(Wsize_bsize(Infix_offset_val(v)) / 3);
}
value coq_shift_fix(value v, value offset) {
return v + Int_val(offset) * 3 * sizeof(value);
}
value coq_last_fix(value v) {
return v + (Int_val(Field(v, 1)) - 2) * sizeof(value);
}
value coq_set_bytecode_field(value v, value i, value code) {
// No write barrier because the bytecode does not live on the OCaml heap
Field(v, Long_val(i)) = (value) Code_val(code);
return Val_unit;
}
value coq_offset_tcode(value code,value offset){
CAMLparam1(code);
CAMLlocal1(res);
res = caml_alloc_small(1, Abstract_tag);
Code_val(res) = Code_val(code) + Int_val(offset);
CAMLreturn(res);
}
value coq_int_tcode(value pc, value offset) {
code_t code = Code_val(pc);
return Val_int(*((code_t) code + Int_val(offset)));
}
value coq_tcode_array(value tcodes) {
CAMLparam1(tcodes);
CAMLlocal2(res, tmp);
int i;
/* Assumes that the vector of types is small. This was implicit in the
previous code which was building the type array using Alloc_small. */
res = caml_alloc_small(Wosize_val(tcodes), Default_tag);
for (i = 0; i < Wosize_val(tcodes); i++) {
tmp = caml_alloc_small(1, Abstract_tag);
Code_val(tmp) = (code_t) Field(tcodes, i);
Store_field(res, i, tmp);
}
CAMLreturn(res);
}
CAMLprim value coq_obj_set_tag (value arg, value new_tag)
{
#if OCAML_VERSION >= 50000
// Placeholder used by native_compute
abort();
#else
Tag_val (arg) = Int_val (new_tag);
#endif
return Val_unit;
}
|