1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of
the Coq module system *)
(* This module provides the main entry points for type-checking basic
declarations *)
open Util
open Names
open Constr
open Declarations
open Environ
open Entries
open Univ
open UVars
module NamedDecl = Context.Named.Declaration
(* Checks the section variables for the body.
Returns the closure of the union with the variables in the type.
*)
let check_section_variables env declared_vars body typ =
let env_ids = ids_of_named_context_val (named_context_val env) in
Id.Set.iter (fun id -> if not (Id.Set.mem id env_ids) then Type_errors.error_unbound_var env id) declared_vars;
let tyvars = global_vars_set env typ in
let declared_vars = Environ.really_needed env (Id.Set.union declared_vars tyvars) in
let () = match body with
| None -> ()
| Some body ->
let ids_def = global_vars_set env body in
let inferred_vars = Environ.really_needed env (Id.Set.union declared_vars ids_def) in
if not (Id.Set.subset inferred_vars declared_vars) then
Type_errors.error_undeclared_used_variables env ~declared_vars ~inferred_vars
in
declared_vars
let compute_section_variables env body typ =
if List.is_empty (named_context env) then
(* Empty section context: optimization *)
Id.Set.empty
else
let ids =
Option.fold_right
(fun c -> Id.Set.union (global_vars_set env c))
body (global_vars_set env typ) in
Environ.really_needed env ids
let used_section_variables env declared_hyps body typ =
let hyps =
match declared_hyps with
| None -> compute_section_variables env body typ
| Some declared -> check_section_variables env declared body typ
in
(* Order the variables *)
List.filter (fun d -> Id.Set.mem (NamedDecl.get_id d) hyps) (Environ.named_context env)
(* Insertion of constants and parameters in environment. *)
type 'a effect_handler =
env -> Constr.t -> 'a -> (Constr.t * ContextSet.t * int)
let skip_trusted_seff sl b e =
let rec aux sl b e =
let open Context.Rel.Declaration in
if Int.equal sl 0 then b, e
else match Constr.kind b with
| LetIn (n,c,ty,bo) ->
aux (sl - 1) bo (Environ.push_rel (LocalDef (n,c,ty)) e)
| App (hd, args) ->
let () = assert (Int.equal (Array.length args) 1) in
begin match Constr.kind hd with
| Lambda (n,ty,bo) ->
aux (sl - 1) bo (Environ.push_rel (LocalAssum (n,ty)) e)
| _ -> assert false
end
| _ -> assert false
in
aux sl b e
type typing_context =
TyCtx of Environ.env * unsafe_type_judgment * Id.Set.t * UVars.sort_level_subst * universes
let process_universes env = function
| Entries.Monomorphic_entry ->
env, UVars.empty_sort_subst, UVars.Instance.empty, Monomorphic
| Entries.Polymorphic_entry uctx ->
(** [ctx] must contain local universes, such that it has no impact
on the rest of the graph (up to transitivity). *)
let env = Environ.push_context ~strict:false uctx env in
let inst, auctx = UVars.abstract_universes uctx in
let usubst = UVars.make_instance_subst inst in
env, usubst, inst, Polymorphic auctx
let check_primitive_type env op_t u t =
let inft = Typeops.type_of_prim_or_type env u op_t in
match Conversion.default_conv Conversion.CONV env inft t with
| Result.Ok () -> ()
| Result.Error () ->
Type_errors.error_incorrect_primitive env (make_judge op_t inft) t
let adjust_primitive_univ_entry p auctx = function
| Monomorphic_entry ->
assert (AbstractContext.is_empty auctx); (* ensured by ComPrimitive *)
Monomorphic_entry
| Polymorphic_entry uctx ->
assert (not (AbstractContext.is_empty auctx)); (* ensured by ComPrimitive *)
(* [push_context] will check that the universes aren't repeated in
the instance so comparing the sizes works. No polymorphic
primitive uses constraints currently. *)
if not (AbstractContext.size auctx = UContext.size uctx
&& Constraints.is_empty (UContext.constraints uctx))
then CErrors.user_err Pp.(str "Incorrect universes for primitive " ++
str (CPrimitives.op_or_type_to_string p));
Polymorphic_entry (UContext.refine_names (AbstractContext.names auctx) uctx)
let infer_primitive env { prim_entry_type = utyp; prim_entry_content = p; } =
let open CPrimitives in
let auctx = CPrimitives.op_or_type_univs p in
let univs, typ =
match utyp with
| None ->
let u = UContext.instance (AbstractContext.repr auctx) in
let typ = Typeops.type_of_prim_or_type env u p in
let univs = if AbstractContext.is_empty auctx then Monomorphic
else Polymorphic auctx
in
univs, typ
| Some (typ,univ_entry) ->
let univ_entry = adjust_primitive_univ_entry p auctx univ_entry in
let env, usubst, u, univs = process_universes env univ_entry in
let typ = (Typeops.infer_type env typ).utj_val in
let () = check_primitive_type env p u typ in
let typ = Vars.subst_univs_level_constr usubst typ in
univs, typ
in
let body = match p with
| OT_op op -> Declarations.Primitive op
| OT_type _ -> Undef None
| OT_const c -> Def (CPrimitives.body_of_prim_const c)
in
(* Primitives not allowed in sections (checked in safe_typing) *)
assert (List.is_empty (named_context env));
{
const_hyps = [];
const_univ_hyps = Instance.empty;
const_body = body;
const_type = typ;
const_body_code = ();
const_universes = univs;
const_relevance = Sorts.Relevant;
const_inline_code = false;
const_typing_flags = Environ.typing_flags env;
}
let infer_symbol env { symb_entry_universes; symb_entry_unfold_fix; symb_entry_type } =
let env, usubst, _, univs = process_universes env symb_entry_universes in
let j = Typeops.infer env symb_entry_type in
let r = Typeops.assumption_of_judgment env j in
let t = Vars.subst_univs_level_constr usubst j.uj_val in
{
const_hyps = [];
const_univ_hyps = Instance.empty;
const_body = Symbol symb_entry_unfold_fix;
const_type = t;
const_body_code = ();
const_universes = univs;
const_relevance = UVars.subst_sort_level_relevance usubst r;
const_inline_code = false;
const_typing_flags = Environ.typing_flags env;
}
let make_univ_hyps = function
| None -> Instance.empty
| Some us -> us
let infer_parameter ~sec_univs env entry =
let env, usubst, _, univs = process_universes env entry.parameter_entry_universes in
let j = Typeops.infer env entry.parameter_entry_type in
let r = Typeops.assumption_of_judgment env j in
let typ = Vars.subst_univs_level_constr usubst j.uj_val in
let undef = Undef entry.parameter_entry_inline_code in
let hyps = used_section_variables env entry.parameter_entry_secctx None typ in
{
const_hyps = hyps;
const_univ_hyps = make_univ_hyps sec_univs;
const_body = undef;
const_type = typ;
const_body_code = ();
const_universes = univs;
const_relevance = UVars.subst_sort_level_relevance usubst r;
const_inline_code = false;
const_typing_flags = Environ.typing_flags env;
}
let infer_definition ~sec_univs env entry =
let env, usubst, _, univs = process_universes env entry.const_entry_universes in
let j = Typeops.infer env entry.const_entry_body in
let typ = match entry.const_entry_type with
| None ->
Vars.subst_univs_level_constr usubst j.uj_type
| Some t ->
let tj = Typeops.infer_type env t in
let _ = Typeops.judge_of_cast env j DEFAULTcast tj in
Vars.subst_univs_level_constr usubst tj.utj_val
in
let body = Vars.subst_univs_level_constr usubst j.uj_val in
let def = Def body in
let hyps = used_section_variables env entry.const_entry_secctx (Some body) typ in
{
const_hyps = hyps;
const_univ_hyps = make_univ_hyps sec_univs;
const_body = def;
const_type = typ;
const_body_code = ();
const_universes = univs;
const_relevance = Relevanceops.relevance_of_term env body;
const_inline_code = entry.const_entry_inline_code;
const_typing_flags = Environ.typing_flags env;
}
let infer_constant ~sec_univs env = function
| PrimitiveEntry entry -> infer_primitive env entry
| SymbolEntry entry -> infer_symbol env entry
| ParameterEntry entry -> infer_parameter ~sec_univs env entry
| DefinitionEntry entry -> infer_definition ~sec_univs env entry
(** Definition is opaque (Qed), so we delay the typing of its body. *)
let infer_opaque ~sec_univs env entry =
let env, usubst, _, univs = process_universes env entry.opaque_entry_universes in
let typj = Typeops.infer_type env entry.opaque_entry_type in
let context = TyCtx (env, typj, entry.opaque_entry_secctx, usubst, univs) in
let def = OpaqueDef () in
let typ = Vars.subst_univs_level_constr usubst typj.utj_val in
let hyps = used_section_variables env (Some entry.opaque_entry_secctx) None typ in
{
const_hyps = hyps;
const_univ_hyps = make_univ_hyps sec_univs;
const_body = def;
const_type = typ;
const_body_code = ();
const_universes = univs;
const_relevance = UVars.subst_sort_level_relevance usubst @@ Sorts.relevance_of_sort typj.utj_type;
const_inline_code = false;
const_typing_flags = Environ.typing_flags env;
}, context
let check_delayed (type a) (handle : a effect_handler) tyenv (body : a proof_output) =
let TyCtx (env, tyj, declared, usubst, univs) = tyenv in
let ((body, uctx), side_eff) = body in
let (body, uctx', valid_signatures) = handle env body side_eff in
let uctx = ContextSet.union uctx uctx' in
let env, univs = match univs with
| Monomorphic ->
assert (UVars.is_empty_sort_subst usubst);
push_context_set uctx env, Opaqueproof.PrivateMonomorphic uctx
| Polymorphic _ ->
assert (Int.equal valid_signatures 0);
push_subgraph uctx env,
let private_univs = on_snd (subst_univs_level_constraints (snd usubst)) uctx in
Opaqueproof.PrivatePolymorphic private_univs
in
(* Note: non-trivial trusted side-effects only in monomorphic case *)
let () =
let eff_body, eff_env = skip_trusted_seff valid_signatures body env in
let j = Typeops.infer eff_env eff_body in
let _ : unsafe_judgment = Typeops.judge_of_cast eff_env j DEFAULTcast tyj in
()
in
let declared =
Environ.really_needed env (Id.Set.union declared (global_vars_set env tyj.utj_val))
in
let declared' = check_section_variables env declared (Some body) tyj.utj_val in
let () = assert (Id.Set.equal declared declared') in
(* Note: non-trivial usubst only in polymorphic case *)
let def = Vars.subst_univs_level_constr usubst body in
def, univs
(*s Global and local constant declaration. *)
let infer_local_assum env t =
let j = Typeops.infer env t in
let t = Typeops.assumption_of_judgment env j in
j.uj_val, t
let infer_local_def env _id { secdef_body; secdef_type; } =
let j = Typeops.infer env secdef_body in
let typ = match secdef_type with
| None -> j.uj_type
| Some typ ->
let tj = Typeops.infer_type env typ in
let _ = Typeops.judge_of_cast env j DEFAULTcast tj in
tj.utj_val
in
let c = j.uj_val in
let r = Relevanceops.relevance_of_term env c in
c, r, typ
|