1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** This file defines the most important datatype of Coq, namely kernel terms,
as well as a handful of generic manipulation functions. *)
open Names
(** {6 Simply type aliases } *)
type pconstant = Constant.t UVars.puniverses
type pinductive = inductive UVars.puniverses
type pconstructor = constructor UVars.puniverses
(** {6 Existential variables } *)
type metavariable = int
(** {6 Case annotation } *)
type case_style = LetStyle | IfStyle | LetPatternStyle | MatchStyle
| RegularStyle (** infer printing form from number of constructor *)
type case_printing =
{ style : case_style }
(* INVARIANT:
* - Array.length ci_cstr_ndecls = Array.length ci_cstr_nargs
* - forall (i : 0 .. pred (Array.length ci_cstr_ndecls)),
* ci_cstr_ndecls.(i) >= ci_cstr_nargs.(i)
*)
type case_info =
{ ci_ind : inductive; (* inductive type to which belongs the value that is being matched *)
ci_npar : int; (* number of parameters of the above inductive type *)
ci_cstr_ndecls : int array; (* For each constructor, the corresponding integer determines
the number of values that can be bound in a match-construct.
NOTE: parameters of the inductive type are therefore excluded from the count *)
ci_cstr_nargs : int array; (* for each constructor, the corresponding integers determines
the number of values that can be applied to the constructor,
in addition to the parameters of the related inductive type
NOTE: "lets" are therefore excluded from the count
NOTE: parameters of the inductive type are also excluded from the count *)
ci_pp_info : case_printing (* not interpreted by the kernel *)
}
(** {6 The type of constructions } *)
type t
type constr = t
(** [types] is the same as [constr] but is intended to be used for
documentation to indicate that such or such function specifically works
with {e types} (i.e. terms of type a sort).
(Rem:plurial form since [type] is a reserved ML keyword) *)
type types = constr
(** {5 Functions for dealing with constr terms. }
The following functions are intended to simplify and to uniform the
manipulation of terms. Some of these functions may be overlapped with
previous ones. *)
(** {6 Term constructors. } *)
(** Constructs a de Bruijn index (DB indices begin at 1) *)
val mkRel : int -> constr
(** Constructs a Variable *)
val mkVar : Id.t -> constr
(** Constructs a machine integer *)
val mkInt : Uint63.t -> constr
(** Constructs an array *)
val mkArray : UVars.Instance.t * constr array * constr * types -> constr
(** Constructs a machine float number *)
val mkFloat : Float64.t -> constr
(** Constructs a machine string. *)
val mkString : Pstring.t -> constr
(** Constructs an patvar named "?n" *)
val mkMeta : metavariable -> constr
(** Constructs an existential variable *)
type existential = Evar.t * constr SList.t
val mkEvar : existential -> constr
(** Construct a sort *)
val mkSort : Sorts.t -> types
val mkSProp : types
val mkProp : types
val mkSet : types
val mkType : Univ.Universe.t -> types
(** This defines the strategy to use for verifiying a Cast *)
type cast_kind = VMcast | NATIVEcast | DEFAULTcast
(** Constructs the term [t1::t2], i.e. the term t{_ 1} casted with the
type t{_ 2} (that means t2 is declared as the type of t1). *)
val mkCast : constr * cast_kind * constr -> constr
type 'a binder_annot = ('a,Sorts.relevance) Context.pbinder_annot
(** Constructs the product [(x:t1)t2] *)
val mkProd : Name.t binder_annot * types * types -> types
(** Constructs the abstraction \[x:t{_ 1}\]t{_ 2} *)
val mkLambda : Name.t binder_annot * types * constr -> constr
(** Constructs the product [let x = t1 : t2 in t3] *)
val mkLetIn : Name.t binder_annot * constr * types * constr -> constr
(** [mkApp (f, [|t1; ...; tN|]] constructs the application
{%html:(f t<sub>1</sub> ... t<sub>n</sub>)%}
{%latex:$(f~t_1\dots f_n)$%}. *)
val mkApp : constr * constr array -> constr
val map_puniverses : ('a -> 'b) -> 'a UVars.puniverses -> 'b UVars.puniverses
(** Constructs a Constant.t *)
val mkConstU : pconstant -> constr
(** Constructs a projection application *)
val mkProj : (Projection.t * Sorts.relevance * constr) -> constr
(** Inductive types *)
(** Constructs the ith (co)inductive type of the block named kn *)
val mkIndU : pinductive -> constr
(** Constructs the jth constructor of the ith (co)inductive type of the
block named kn. *)
val mkConstructU : pconstructor -> constr
val mkConstructUi : pinductive * int -> constr
(** Make a constant, inductive, constructor or variable. *)
val mkRef : GlobRef.t UVars.puniverses -> constr
module UnsafeMonomorphic : sig
val mkConst : Constant.t -> constr
val mkInd : inductive -> constr
val mkConstruct : constructor -> constr
end
(** Constructs a destructor of inductive type.
[mkCase ci params p c ac] stand for match [c] as [x] in [I args] return [p] with [ac]
presented as describe in [ci].
[p] structure is [args x |- "return clause"]
[ac]{^ ith} element is ith constructor case presented as
{e construct_args |- case_term } *)
type ('constr,'r) pcase_branch = (Name.t,'r) Context.pbinder_annot array * 'constr
(** Names bound by matching the constructor for this branch. *)
type ('types,'r) pcase_return = ((Name.t,'r) Context.pbinder_annot array * 'types) * 'r
(** Names of the indices + name of self *)
type 'constr pcase_invert =
| NoInvert
(** Normal reduction: match when the scrutinee is a constructor. *)
| CaseInvert of { indices : 'constr array; }
(** SProp to non SProp only:
No constructors or reduce when the indices match those of the unique constructor. *)
type ('constr, 'types, 'univs, 'r) pcase =
case_info * 'univs * 'constr array * ('types,'r) pcase_return * 'constr pcase_invert * 'constr * ('constr,'r) pcase_branch array
type case_invert = constr pcase_invert
type case_return = (types, Sorts.relevance) pcase_return
type case_branch = (constr, Sorts.relevance) pcase_branch
type case = (constr, types, UVars.Instance.t, Sorts.relevance) pcase
val mkCase : case -> constr
(** If [recindxs = [|i1,...in|]]
[funnames = [|f1,.....fn|]]
[typarray = [|t1,...tn|]]
[bodies = [|b1,.....bn|]]
then [mkFix ((recindxs,i), funnames, typarray, bodies) ]
constructs the {% $ %}i{% $ %}th function of the block (counting from 0)
[Fixpoint f1 [ctx1] = b1
with f2 [ctx2] = b2
...
with fn [ctxn] = bn.]
where the length of the {% $ %}j{% $ %}th context is {% $ %}ij{% $ %}.
*)
type ('constr, 'types, 'r) prec_declaration =
(Name.t, 'r) Context.pbinder_annot array * 'types array * 'constr array
type ('constr, 'types, 'r) pfixpoint =
(int array * int) * ('constr, 'types, 'r) prec_declaration
(** The array of [int]'s tells for each component of the array of
mutual fixpoints the number of lambdas to skip before finding the
recursive argument (e.g., value is 2 in "fix f (x:A) (y:=t) (z:B)
(v:=u) (w:I) {struct w}"), telling to skip x and z and that w is
the recursive argument); The second component [int] tells which
component of the block is returned *)
type ('constr, 'types, 'r) pcofixpoint =
int * ('constr, 'types, 'r) prec_declaration
(** The component [int] tells which component of the block of
cofixpoint is returned *)
type rec_declaration = (constr, types, Sorts.relevance) prec_declaration
type fixpoint = (constr, types, Sorts.relevance) pfixpoint
val mkFix : fixpoint -> constr
(** If [funnames = [|f1,.....fn|]]
[typarray = [|t1,...tn|]]
[bodies = [b1,.....bn]]
then [mkCoFix (i, (funnames, typarray, bodies))]
constructs the ith function of the block
[CoFixpoint f1 = b1
with f2 = b2
...
with fn = bn.]
*)
type cofixpoint = (constr, types, Sorts.relevance) pcofixpoint
val mkCoFix : cofixpoint -> constr
(** {6 Concrete type for making pattern-matching. } *)
(** [constr list] is an instance matching definitional [named_context] in
the same order (i.e. last argument first) *)
type 'constr pexistential = Evar.t * 'constr SList.t
type ('constr, 'types, 'sort, 'univs, 'r) kind_of_term =
| Rel of int
(** Gallina-variable introduced by [forall], [fun], [let-in], [fix], or [cofix]. *)
| Var of Id.t
(** Gallina-variable that was introduced by Vernacular-command that
extends the local context of the currently open section (i.e.
[Variable] or [Let]). *)
| Meta of metavariable
| Evar of 'constr pexistential
| Sort of 'sort
| Cast of 'constr * cast_kind * 'types
| Prod of (Name.t,'r) Context.pbinder_annot * 'types * 'types
(** Concrete syntax ["forall A:B,C"] is represented as [Prod (A,B,C)]. *)
| Lambda of (Name.t,'r) Context.pbinder_annot * 'types * 'constr
(** Concrete syntax ["fun A:B => C"] is represented as [Lambda (A,B,C)]. *)
| LetIn of (Name.t,'r) Context.pbinder_annot * 'constr * 'types * 'constr
(** Concrete syntax ["let A:C := B in D"] is represented as [LetIn (A,B,C,D)]. *)
| App of 'constr * 'constr array
(** Concrete syntax ["(F P1 P2 ... Pn)"] is represented as [App (F, [|P1; P2; ...; Pn|])].
The {!mkApp} constructor also enforces the following invariant:
- [F] itself is not {!App}
- and [[|P1;..;Pn|]] is not empty. *)
| Const of (Constant.t * 'univs)
(** Gallina-variable that was introduced by Vernacular-command that
extends the global environment (i.e. [Parameter], or [Axiom], or
[Definition], or [Theorem], or [Symbol] etc.) *)
| Ind of (inductive * 'univs)
(** A name of an inductive type defined by [Variant], [Inductive] or
[Record] Vernacular-commands. *)
| Construct of (constructor * 'univs)
(** A constructor of an inductive type defined by [Variant],
[Inductive] or [Record] Vernacular-commands. *)
| Case of case_info * 'univs * 'constr array * ('types,'r) pcase_return * 'constr pcase_invert * 'constr * ('constr,'r) pcase_branch array
(** [Case (ci,u,params,p,iv,c,brs)] is a [match c return p with brs]
expression. [c] lives in inductive [ci.ci_ind] at universe
instance [u] and parameters [params]. If this match has case
inversion (ie match on a 1 constructor SProp inductive with
proof relevant return type) the indices are in [iv].
The names in [p] are the names of the bound indices and
inductive value (ie the [in] and [as] clauses).
The names in the [brs] are the names of the variables bound in the respective branch. *)
| Fix of ('constr, 'types, 'r) pfixpoint
| CoFix of ('constr, 'types, 'r) pcofixpoint
| Proj of Projection.t * 'r * 'constr
(** The relevance is the relevance of the whole term *)
| Int of Uint63.t
| Float of Float64.t
| String of Pstring.t
| Array of 'univs * 'constr array * 'constr * 'types
(** [Array (u,vals,def,t)] is an array of [vals] in type [t] with default value [def].
[u] is a universe containing [t]. *)
(** User view of [constr]. For [App], it is ensured there is at
least one argument and the function is not itself an applicative
term *)
val kind : constr -> (constr, types, Sorts.t, UVars.Instance.t, Sorts.relevance) kind_of_term
val of_kind : (constr, types, Sorts.t, UVars.Instance.t, Sorts.relevance) kind_of_term -> constr
val kind_nocast_gen : ('v -> ('v, 'v, 'sort, 'univs, 'r) kind_of_term) ->
('v -> ('v, 'v, 'sort, 'univs, 'r) kind_of_term)
val kind_nocast : constr -> (constr, types, Sorts.t, UVars.Instance.t, Sorts.relevance) kind_of_term
(** {6 Simple case analysis} *)
val isRel : constr -> bool
val isRelN : int -> constr -> bool
val isVar : constr -> bool
val isVarId : Id.t -> constr -> bool
val isRef : constr -> bool
val isRefX : GlobRef.t -> constr -> bool
val isInd : constr -> bool
val isEvar : constr -> bool
val isMeta : constr -> bool
val isEvar_or_Meta : constr -> bool
val isSort : constr -> bool
val isCast : constr -> bool
val isApp : constr -> bool
val isLambda : constr -> bool
val isLetIn : constr -> bool
val isProd : constr -> bool
val isConst : constr -> bool
val isConstruct : constr -> bool
val isFix : constr -> bool
val isCoFix : constr -> bool
val isCase : constr -> bool
val isProj : constr -> bool
val is_Prop : constr -> bool
val is_Set : constr -> bool
val isprop : constr -> bool
val is_Type : constr -> bool
val iskind : constr -> bool
val is_small : Sorts.t -> bool
(** {6 Term destructors } *)
(** Destructor operations are partial functions and
@raise DestKO if the term has not the expected form. *)
exception DestKO
(** Destructs a de Bruijn index *)
val destRel : constr -> int
(** Destructs an existential variable *)
val destMeta : constr -> metavariable
(** Destructs a variable *)
val destVar : constr -> Id.t
(** Destructs a sort. [is_Prop] recognizes the sort [Prop], whether
[isprop] recognizes both [Prop] and [Set]. *)
val destSort : constr -> Sorts.t
(** Destructs a casted term *)
val destCast : constr -> constr * cast_kind * constr
(** Destructs the product {% $ %}(x:t_1)t_2{% $ %} *)
val destProd : types -> Name.t binder_annot * types * types
(** Destructs the abstraction {% $ %}[x:t_1]t_2{% $ %} *)
val destLambda : constr -> Name.t binder_annot * types * constr
(** Destructs the let {% $ %}[x:=b:t_1]t_2{% $ %} *)
val destLetIn : constr -> Name.t binder_annot * constr * types * constr
(** Destructs an application *)
val destApp : constr -> constr * constr array
(** Decompose any term as an applicative term; the list of args can be empty *)
val decompose_app_list : constr -> constr * constr list
(** Same as [decompose_app], but returns an array. *)
val decompose_app : constr -> constr * constr array
(** Destructs a constant *)
val destConst : constr -> Constant.t UVars.puniverses
(** Destructs an existential variable *)
val destEvar : constr -> existential
(** Destructs a (co)inductive type *)
val destInd : constr -> inductive UVars.puniverses
(** Destructs a constructor *)
val destConstruct : constr -> constructor UVars.puniverses
(** Destructs a [match c as x in I args return P with ... |
Ci(...yij...) => ti | ... end] (or [let (..y1i..) := c as x in I args
return P in t1], or [if c then t1 else t2])
@return [(info,c,fun args x => P,[|...|fun yij => ti| ...|])]
where [info] is pretty-printing information *)
val destCase : constr -> case
(** Destructs a projection *)
val destProj : constr -> Projection.t * Sorts.relevance * constr
(** Destructs the {% $ %}i{% $ %}th function of the block
[Fixpoint f{_ 1} ctx{_ 1} = b{_ 1}
with f{_ 2} ctx{_ 2} = b{_ 2}
...
with f{_ n} ctx{_ n} = b{_ n}],
where the length of the {% $ %}j{% $ %}th context is {% $ %}ij{% $ %}.
*)
val destFix : constr -> fixpoint
val destCoFix : constr -> cofixpoint
val destRef : constr -> GlobRef.t UVars.puniverses
(** {6 Equality} *)
(** [equal a b] is true if [a] equals [b] modulo alpha, casts,
and application grouping *)
val equal : constr -> constr -> bool
(** [eq_constr_univs u a b] is [true] if [a] equals [b] modulo alpha, casts,
application grouping and the universe equalities in [u]. *)
val eq_constr_univs : constr UGraph.check_function
(** [leq_constr_univs u a b] is [true] if [a] is convertible to [b] modulo
alpha, casts, application grouping and the universe inequalities in [u]. *)
val leq_constr_univs : constr UGraph.check_function
(** [eq_constr_univs a b] [true, c] if [a] equals [b] modulo alpha, casts,
application grouping and ignoring universe instances. *)
val eq_constr_nounivs : constr -> constr -> bool
(** Total ordering compatible with [equal] *)
val compare : constr -> constr -> int
(** {6 Extension of Context with declarations on constr} *)
type rel_declaration = (constr, types, Sorts.relevance) Context.Rel.Declaration.pt
type named_declaration = (constr, types, Sorts.relevance) Context.Named.Declaration.pt
type compacted_declaration = (constr, types, Sorts.relevance) Context.Compacted.Declaration.pt
type rel_context = rel_declaration list
type named_context = named_declaration list
type compacted_context = compacted_declaration list
(** {6 Relocation and substitution } *)
(** [exliftn el c] lifts [c] with lifting [el] *)
val exliftn : Esubst.lift -> constr -> constr
(** [liftn n k c] lifts by [n] indexes above or equal to [k] in [c] *)
val liftn : int -> int -> constr -> constr
(** [lift n c] lifts by [n] the positive indexes in [c] *)
val lift : int -> constr -> constr
(** {6 Functionals working on expressions canonically abstracted over
a local context (possibly with let-ins)} *)
(** [map_branches f br] maps [f] on the immediate subterms of an array
of "match" branches [br] in canonical eta-let-expanded form; it is
not recursive and the order with which subterms are processed is
not specified; it preserves sharing; the immediate subterms are the
types and possibly terms occurring in the context of each branch as
well as the body of each branch *)
val map_branches : (constr -> constr) -> case_branch array -> case_branch array
(** [map_return_predicate f p] maps [f] on the immediate subterms of a
return predicate of a "match" in canonical eta-let-expanded form;
it is not recursive and the order with which subterms are processed
is not specified; it preserves sharing; the immediate subterms are
the types and possibly terms occurring in the context of each
branch as well as the body of the predicate *)
val map_return_predicate : (constr -> constr) -> case_return -> case_return
(** [map_branches_with_binders f br] maps [f] on the immediate
subterms of an array of "match" branches [br] in canonical
eta-let-expanded form; it carries an extra data [n] (typically a
lift index) which is processed by [g] (which typically adds 1 to
[n]) at each binder traversal; it is not recursive and the order
with which subterms are processed is not specified; it preserves
sharing; the immediate subterms are the types and possibly terms
occurring in the context of the branch as well as the body of the
branch *)
val map_branches_with_binders : ('a -> 'a) -> ('a -> constr -> constr) -> 'a -> case_branch array -> case_branch array
(** [map_return_predicate_with_binders f p] maps [f] on the immediate
subterms of a return predicate of a "match" in canonical
eta-let-expanded form; it carries an extra data [n] (typically a
lift index) which is processed by [g] (which typically adds 1 to
[n]) at each binder traversal; it is not recursive and the order
with which subterms are processed is not specified; it preserves
sharing; the immediate subterms are the types and possibly terms
occurring in the context of each branch as well as the body of the
predicate *)
val map_return_predicate_with_binders : ('a -> 'a) -> ('a -> constr -> constr) -> 'a -> case_return -> case_return
(** {6 Functionals working on the immediate subterm of a construction } *)
(** [fold f acc c] folds [f] on the immediate subterms of [c]
starting from [acc] and proceeding from left to right according to
the usual representation of the constructions; it is not recursive *)
val fold : ('a -> constr -> 'a) -> 'a -> constr -> 'a
val fold_invert : ('a -> 'b -> 'a) -> 'a -> 'b pcase_invert -> 'a
(** [map f c] maps [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
val map : (constr -> constr) -> constr -> constr
val map_invert : ('a -> 'a) -> 'a pcase_invert -> 'a pcase_invert
(** Like {!map}, but also has an additional accumulator. *)
val fold_map : ('a -> constr -> 'a * constr) -> 'a -> constr -> 'a * constr
val fold_map_invert : ('a -> 'b -> 'a * 'b) ->
'a -> 'b pcase_invert -> 'a * 'b pcase_invert
(** [map_with_binders g f n c] maps [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val map_with_binders :
('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr
(** [iter f c] iters [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
val iter : (constr -> unit) -> constr -> unit
val iter_invert : ('a -> unit) -> 'a pcase_invert -> unit
(** [iter_with_binders g f n c] iters [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val iter_with_binders :
('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit
(** [iter_with_binders g f n c] iters [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val fold_constr_with_binders :
('a -> 'a) -> ('a -> 'b -> constr -> 'b) -> 'a -> 'b -> constr -> 'b
type 'constr constr_compare_fn = int -> 'constr -> 'constr -> bool
(** [compare_head f c1 c2] compare [c1] and [c2] using [f] to compare
the immediate subterms of [c1] of [c2] if needed; Cast's, binders
name and Cases annotations are not taken into account *)
val compare_head : (existential -> existential -> bool) -> constr constr_compare_fn -> constr constr_compare_fn
(** Convert a global reference applied to 2 instances. The int says
how many arguments are given (as we can only use cumulativity for
fully applied inductives/constructors) .*)
type 'univs instance_compare_fn = (GlobRef.t * int) option ->
'univs -> 'univs -> bool
(** [compare_head_gen u s f c1 c2] compare [c1] and [c2] using [f] to
compare the immediate subterms of [c1] of [c2] if needed, [u] to
compare universe instances, [s] to compare sorts; Cast's, binders
name and Cases annotations are not taken into account *)
val compare_head_gen : UVars.Instance.t instance_compare_fn ->
(Sorts.t -> Sorts.t -> bool) ->
(existential -> existential -> bool) ->
constr constr_compare_fn ->
constr constr_compare_fn
val compare_head_gen_leq_with :
('v -> ('v, 'v, 'sort, 'univs, 'r) kind_of_term) ->
('v -> ('v, 'v, 'sort, 'univs, 'r) kind_of_term) ->
'univs instance_compare_fn ->
('sort -> 'sort -> bool) ->
('v pexistential -> 'v pexistential -> bool) ->
'v constr_compare_fn ->
'v constr_compare_fn ->
'v constr_compare_fn
(** [compare_head_gen_with k1 k2 u s f c1 c2] compares [c1] and [c2]
like [compare_head_gen u s f c1 c2], except that [k1] (resp. [k2])
is used,rather than {!kind}, to expose the immediate subterms of
[c1] (resp. [c2]). *)
val compare_head_gen_with :
('v -> ('v, 'v, 'sort, 'univs, 'r) kind_of_term) ->
('v -> ('v, 'v, 'sort, 'univs, 'r) kind_of_term) ->
'univs instance_compare_fn ->
('sort -> 'sort -> bool) ->
('v pexistential -> 'v pexistential -> bool) ->
'v constr_compare_fn ->
'v constr_compare_fn
(** [compare_head_gen_leq u s f fle c1 c2] compare [c1] and [c2] using
[f] to compare the immediate subterms of [c1] of [c2] for
conversion, [fle] for cumulativity, [u] to compare universe
instances (the first boolean tells if they belong to a Constant.t),
[s] to compare sorts for for subtyping; Cast's, binders name and
Cases annotations are not taken into account *)
val compare_head_gen_leq : UVars.Instance.t instance_compare_fn ->
(Sorts.t -> Sorts.t -> bool) ->
(existential -> existential -> bool) ->
constr constr_compare_fn ->
constr constr_compare_fn ->
constr constr_compare_fn
val eq_invert : ('a -> 'a -> bool)
-> 'a pcase_invert -> 'a pcase_invert -> bool
(** {6 Hashconsing} *)
val hash : constr -> int
val case_info_hash : case_info -> int
(*********************************************************************)
val hcons : constr -> constr
val debug_print : constr -> Pp.t
val debug_print_fix : ('a -> Pp.t) -> ('a, 'a, 'r) pfixpoint -> Pp.t
val mkConst : Constant.t -> constr
[@@deprecated "Use [mkConstU] or if truly needed [UnsafeMonomorphic.mkConst]"]
val mkInd : inductive -> constr
[@@deprecated "Use [mkIndU] or if truly needed [UnsafeMonomorphic.mkInd]"]
val mkConstruct : constructor -> constr
[@@deprecated "Use [mkConstructU] or if truly needed [UnsafeMonomorphic.mkConstruct]"]
|