File: entries.mli

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (131 lines) | stat: -rw-r--r-- 4,492 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Names
open Constr

(** This module defines the entry types for global declarations. This
   information is entered in the environments. This includes global
   constants/axioms, mutual inductive definitions, modules and module
   types *)

type universes_entry =
  | Monomorphic_entry
  | Polymorphic_entry of UVars.UContext.t

type inductive_universes_entry =
  | Monomorphic_ind_entry
  | Polymorphic_ind_entry of UVars.UContext.t
  | Template_ind_entry of Univ.ContextSet.t

type variance_entry = UVars.Variance.t option array

type 'a in_universes_entry = 'a * universes_entry

(** {6 Declaration of inductive types. } *)

(** Assume the following definition in concrete syntax:
{v Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with      Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp. v}

then, in i{^ th} block, [mind_entry_params] is [xn:Xn;...;x1:X1];
[mind_entry_arity] is [Ai], defined in context [x1:X1;...;xn:Xn];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)

type one_inductive_entry = {
  mind_entry_typename : Id.t;
  mind_entry_arity : constr;
  mind_entry_consnames : Id.t list;
  mind_entry_lc : constr list;
}

type mutual_inductive_entry = {
  mind_entry_record : (Id.t array option) option;
  (** Some (Some ids): primitive records with ids the binder name of each
      record in their respective projections. Not used by the kernel.
      Some None: non-primitive record *)
  mind_entry_finite : Declarations.recursivity_kind;
  mind_entry_params : Constr.rel_context;
  mind_entry_inds : one_inductive_entry list;
  mind_entry_universes : inductive_universes_entry;
  mind_entry_variance : variance_entry option;
  (* [None] if non-cumulative, otherwise associates each universe of
     the entry to [None] if to be inferred or [Some v] if to be
     checked. *)
  mind_entry_private : bool option;
}

(** {6 Constants (Definition/Axiom) } *)

type definition_entry = {
  const_entry_body : constr;
  (* List of section variables *)
  const_entry_secctx : Id.Set.t option;
  const_entry_type : types option;
  const_entry_universes : universes_entry;
  const_entry_inline_code : bool;
}

type section_def_entry = {
  secdef_body : constr;
  secdef_type : types option;
}

type 'a opaque_entry = {
  opaque_entry_body   : 'a;
  (* List of section variables *)
  opaque_entry_secctx : Id.Set.t;
  opaque_entry_type        : types;
  opaque_entry_universes   : universes_entry;
}

type inline = int option (* inlining level, None for no inlining *)

type parameter_entry = {
  parameter_entry_secctx : Id.Set.t option;
  parameter_entry_type : types;
  parameter_entry_universes : universes_entry;
  parameter_entry_inline_code : inline;
}

type primitive_entry = {
  prim_entry_type : types in_universes_entry option;
  prim_entry_content : CPrimitives.op_or_type;
}

type symbol_entry = {
  symb_entry_type : types;
  symb_entry_unfold_fix: bool;
  symb_entry_universes : universes_entry;
}

type 'a proof_output = constr Univ.in_universe_context_set * 'a

type constant_entry =
  | DefinitionEntry : definition_entry -> constant_entry
  | ParameterEntry : parameter_entry -> constant_entry
  | PrimitiveEntry : primitive_entry -> constant_entry
  | SymbolEntry : symbol_entry -> constant_entry

(** {6 Modules } *)

type module_struct_entry = (constr * UVars.AbstractContext.t option) Declarations.module_alg_expr

type module_params_entry =
  (MBId.t * module_struct_entry * inline) list (** older first *)

type module_type_entry = module_params_entry * module_struct_entry

type module_entry =
  | MType of module_params_entry * module_struct_entry
  | MExpr of
      module_params_entry * module_struct_entry * module_struct_entry option