1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
{
open Ltac_plugin
open Util
open Pp
open Constrexpr
open Indfun_common
open Indfun
open Stdarg
open Tacarg
open Extraargs
open Tactypes
open Pcoq.Prim
open Pcoq.Constr
open Pltac
}
DECLARE PLUGIN "coq-core.plugins.funind"
{
let pr_fun_ind_using env sigma prc prlc _ opt_c =
match opt_c with
| None -> mt ()
| Some b -> spc () ++ hov 2 (str "using" ++ spc () ++ Miscprint.pr_with_bindings (prc env sigma) (prlc env sigma) b)
(* Duplication of printing functions because "'a with_bindings" is
(internally) not uniform in 'a: indeed constr_with_bindings at the
"typed" level has type "open_constr with_bindings" instead of
"constr with_bindings"; hence, its printer cannot be polymorphic in
(prc,prlc)... *)
let pr_fun_ind_using_typed prc prlc _ opt_c =
match opt_c with
| None -> mt ()
| Some b ->
let env = Global.env () in
let evd = Evd.from_env env in
let (_, b) = b env evd in
spc () ++ hov 2 (str "using" ++ spc () ++ Miscprint.pr_with_bindings (prc env evd) (prlc env evd) b)
}
ARGUMENT EXTEND fun_ind_using
TYPED AS constr_with_bindings option
PRINTED BY { pr_fun_ind_using_typed }
RAW_PRINTED BY { pr_fun_ind_using env sigma }
GLOB_PRINTED BY { pr_fun_ind_using env sigma }
| [ "using" constr_with_bindings(c) ] -> { Some c }
| [ ] -> { None }
END
TACTIC EXTEND newfuninv
| [ "functional" "inversion" quantified_hypothesis(hyp) reference_opt(fname) ] ->
{
Invfun.invfun hyp fname
}
END
{
let pr_intro_as_pat prc pat =
match pat with
| Some pat ->
str "as" ++ spc () ++ Miscprint.pr_intro_pattern prc pat
| None -> mt ()
let out_disjunctive = CAst.map (function
| IntroAction (IntroOrAndPattern l) -> l
| _ -> CErrors.user_err Pp.(str "Disjunctive or conjunctive intro pattern expected."))
}
ARGUMENT EXTEND with_names TYPED AS intro_pattern option
PRINTED BY { fun prc _ _ -> pr_intro_as_pat (fun c -> prc env sigma @@ snd @@ c env sigma) }
RAW_PRINTED BY { fun prc _ _ -> pr_intro_as_pat (prc env sigma) }
GLOB_PRINTED BY { fun prc _ _ -> pr_intro_as_pat (prc env sigma) }
| [ "as" simple_intropattern(ipat) ] -> { Some ipat }
| [] -> { None }
END
{
let functional_induction b c x pat =
functional_induction true c x (Option.map out_disjunctive pat)
}
TACTIC EXTEND newfunind
| ["functional" "induction" lconstr(c) fun_ind_using(princl) with_names(pat)] ->
{
(Ltac_plugin.Internals.onSomeWithHoles
(fun x -> functional_induction true c x pat) princl)
}
END
(***** debug only ***)
TACTIC EXTEND snewfunind
| ["soft" "functional" "induction" ne_constr_list(cl) fun_ind_using(princl) with_names(pat)] ->
{
let c = match cl with
| [] -> assert false
| [c] -> c
| c::cl -> EConstr.applist(c,cl)
in
Ltac_plugin.Internals.onSomeWithHoles (fun x -> functional_induction false c x pat) princl }
END
{
let pr_constr_comma_sequence env sigma prc _ _ = prlist_with_sep pr_comma (prc env sigma)
}
ARGUMENT EXTEND constr_comma_sequence'
TYPED AS constr list
PRINTED BY { pr_constr_comma_sequence env sigma }
| [ constr(c) "," constr_comma_sequence'(l) ] -> { c::l }
| [ constr(c) ] -> { [c] }
END
{
let pr_auto_using env sigma prc _prlc _prt = Pptactic.pr_auto_using (prc env sigma)
}
ARGUMENT EXTEND auto_using'
TYPED AS constr list
PRINTED BY { pr_auto_using env sigma }
| [ "using" constr_comma_sequence'(l) ] -> { l }
| [ ] -> { [] }
END
{
module Vernac = Pvernac.Vernac_
let (wit_function_fix_definition : Vernacexpr.fixpoint_expr Loc.located Genarg.uniform_genarg_type) =
Genarg.create_arg "function_fix_definition"
let function_fix_definition =
Pcoq.create_generic_entry2 "function_fix_definition" (Genarg.rawwit wit_function_fix_definition)
}
GRAMMAR EXTEND Gram
GLOBAL: function_fix_definition ;
function_fix_definition:
[ [ g = Vernac.fix_definition -> { Loc.tag ~loc g } ]]
;
END
{
let () =
let raw_printer env sigma _ _ _ (loc,body) = Ppvernac.pr_rec_definition body in
Pptactic.declare_extra_vernac_genarg_pprule wit_function_fix_definition raw_printer
let is_proof_termination_interactively_checked recsl =
List.exists (function
| _,( Vernacexpr.{ rec_order = Some { CAst.v = CMeasureRec _ } }
| Vernacexpr.{ rec_order = Some { CAst.v = CWfRec _} }) -> true
| _, Vernacexpr.{ rec_order = Some { CAst.v = CStructRec _ } }
| _, Vernacexpr.{ rec_order = None } -> false) recsl
let classify_as_Fixpoint recsl =
Vernac_classifier.classify_vernac
(Vernacexpr.(CAst.make @@ { control = []; attrs = []; expr = VernacSynPure (VernacFixpoint(NoDischarge, List.map snd recsl))}))
let classify_funind recsl =
match classify_as_Fixpoint recsl with
| Vernacextend.VtSideff (ids, _)
when is_proof_termination_interactively_checked recsl ->
Vernacextend.(VtStartProof (GuaranteesOpacity, ids))
| x -> x
let is_interactive recsl =
match classify_funind recsl with
| Vernacextend.VtStartProof _ -> true
| _ -> false
}
(* For usability we temporarily switch off some flags during the call
to Function. However this is not satisfactory:
1- Function should not warn "non-recursive" and call the Definition
mechanism instead of Fixpoint when needed
2- Only for automatically generated names should
unused-pattern-matching-variable be ignored. *)
VERNAC COMMAND EXTEND Function STATE CUSTOM
| ["Function" ne_function_fix_definition_list_sep(recsl,"with")]
=> { classify_funind recsl }
-> {
let warn = "-unused-pattern-matching-variable,-non-recursive" in
if is_interactive recsl then
Vernactypes.vtopenproof (fun () ->
CWarnings.with_warn warn
Gen_principle.do_generate_principle_interactive (List.map snd recsl))
else
Vernactypes.vtdefault (fun () ->
CWarnings.with_warn warn
Gen_principle.do_generate_principle (List.map snd recsl))
}
END
{
let pr_fun_scheme_arg (princ_name,fun_name,s) =
Names.Id.print princ_name ++ str " :=" ++ spc() ++ str "Induction for " ++
Libnames.pr_qualid fun_name ++ spc() ++ str "Sort " ++
Sorts.pr_sort_family s
}
VERNAC ARGUMENT EXTEND fun_scheme_arg
PRINTED BY { pr_fun_scheme_arg }
| [ identref(princ_name) ":=" "Induction" "for" reference(fun_name) "Sort" sort_family(s) ] -> { (princ_name.CAst.v,fun_name,s) }
END
{
let warning_error names e =
match e with
| Building_graph e ->
let names = pr_enum Libnames.pr_qualid names in
let error = if do_observe () then (spc () ++ CErrors.print e) else mt () in
Gen_principle.warn_cannot_define_graph (names,error)
| Defining_principle e ->
let names = pr_enum Libnames.pr_qualid names in
let error = if do_observe () then CErrors.print e else mt () in
Gen_principle.warn_cannot_define_principle (names,error)
| _ -> raise e
}
VERNAC COMMAND EXTEND NewFunctionalScheme
| ["Functional" "Scheme" ne_fun_scheme_arg_list_sep(fas,"with") ]
=> { Vernacextend.(VtSideff(List.map pi1 fas, VtLater)) }
->
{ begin
try
Gen_principle.build_scheme fas
with
| Gen_principle.No_graph_found ->
begin
match fas with
| (_,fun_name,_)::_ ->
begin
Gen_principle.make_graph (Smartlocate.global_with_alias fun_name);
try Gen_principle.build_scheme fas
with
| Gen_principle.No_graph_found ->
CErrors.user_err Pp.(str "Cannot generate induction principle(s)")
| e when CErrors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
| _ -> assert false (* we can only have non empty list *)
end
| e when CErrors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
}
END
(***** debug only ***)
VERNAC COMMAND EXTEND NewFunctionalCase
| ["Functional" "Case" fun_scheme_arg(fas) ]
=> { Vernacextend.(VtSideff([pi1 fas], VtLater)) }
-> { Gen_principle.build_case_scheme fas }
END
(***** debug only ***)
VERNAC COMMAND EXTEND GenerateGraph CLASSIFIED AS QUERY
| ["Generate" "graph" "for" reference(c)] ->
{ Gen_principle.make_graph (Smartlocate.global_with_alias c) }
END
|