1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Util
open Names
open Nameops
open Constr
open Constrexpr
open EConstr
open Libnames
let () = CErrors.register_handler begin function
| Rewrite.RewriteFailure (env, sigma, e) ->
let e = Himsg.explain_pretype_error env sigma e in
Some Pp.(str"setoid rewrite failed: " ++ e)
| _ -> None
end
module TC = Typeclasses
let classes_dirpath =
Names.DirPath.make (List.map Id.of_string ["Classes";"Coq"])
let init_setoid () =
if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"]
type rewrite_attributes = {
polymorphic : bool;
locality : Hints.hint_locality;
}
let rewrite_attributes =
let open Attributes.Notations in
Attributes.(polymorphic ++ locality) >>= fun (polymorphic, locality) ->
let locality =
if Locality.make_section_locality locality then Hints.Local else SuperGlobal
in
Attributes.Notations.return { polymorphic; locality }
(** Utility functions *)
let find_reference dir s =
Coqlib.find_reference "generalized rewriting" dir s
[@@warning "-3"]
let lazy_find_reference dir s =
let gr = lazy (find_reference dir s) in
fun () -> Lazy.force gr
module PropGlobal = struct
let morphisms = ["Coq"; "Classes"; "Morphisms"]
let respectful_ref = lazy_find_reference morphisms "respectful"
let proper_class =
let r = lazy (find_reference morphisms "Proper") in
fun () -> Option.get (TC.class_info (Lazy.force r))
let proper_proj () =
UnsafeMonomorphic.mkConst (Option.get (List.hd (proper_class ()).TC.cl_projs).TC.meth_const)
end
(* By default the strategy for "rewrite_db" is top-down *)
let mkappc s l = CAst.make @@ CAppExpl ((qualid_of_ident (Id.of_string s),None),l)
let declare_an_instance n s args =
(((CAst.make @@ Name n),None),
CAst.make @@ CAppExpl ((qualid_of_string s,None), args))
let declare_instance a aeq n s = declare_an_instance n s [a;aeq]
let anew_instance atts binders (name,t) fields =
let _id = Classes.new_instance ~poly:atts.polymorphic
name binders t (true, CAst.make @@ CRecord (fields))
~locality:atts.locality Hints.empty_hint_info
in
()
let declare_instance_refl atts binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive"
in anew_instance atts binders instance
[(qualid_of_ident (Id.of_string "reflexivity"),lemma)]
let declare_instance_sym atts binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric"
in anew_instance atts binders instance
[(qualid_of_ident (Id.of_string "symmetry"),lemma)]
let declare_instance_trans atts binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive"
in anew_instance atts binders instance
[(qualid_of_ident (Id.of_string "transitivity"),lemma)]
let declare_relation atts ?(binders=[]) a aeq n refl symm trans =
init_setoid ();
let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation" in
let () = anew_instance atts binders instance [] in
match (refl,symm,trans) with
(None, None, None) -> ()
| (Some lemma1, None, None) ->
declare_instance_refl atts binders a aeq n lemma1
| (None, Some lemma2, None) ->
declare_instance_sym atts binders a aeq n lemma2
| (None, None, Some lemma3) ->
declare_instance_trans atts binders a aeq n lemma3
| (Some lemma1, Some lemma2, None) ->
let () = declare_instance_refl atts binders a aeq n lemma1 in
declare_instance_sym atts binders a aeq n lemma2
| (Some lemma1, None, Some lemma3) ->
let () = declare_instance_refl atts binders a aeq n lemma1 in
let () = declare_instance_trans atts binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder" in
anew_instance atts binders instance
[(qualid_of_ident (Id.of_string "PreOrder_Reflexive"), lemma1);
(qualid_of_ident (Id.of_string "PreOrder_Transitive"),lemma3)]
| (None, Some lemma2, Some lemma3) ->
let () = declare_instance_sym atts binders a aeq n lemma2 in
let () = declare_instance_trans atts binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER" in
anew_instance atts binders instance
[(qualid_of_ident (Id.of_string "PER_Symmetric"), lemma2);
(qualid_of_ident (Id.of_string "PER_Transitive"),lemma3)]
| (Some lemma1, Some lemma2, Some lemma3) ->
let () = declare_instance_refl atts binders a aeq n lemma1 in
let () = declare_instance_sym atts binders a aeq n lemma2 in
let () = declare_instance_trans atts binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in
anew_instance atts binders instance
[(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), lemma1);
(qualid_of_ident (Id.of_string "Equivalence_Symmetric"), lemma2);
(qualid_of_ident (Id.of_string "Equivalence_Transitive"), lemma3)]
let cHole = CAst.make @@ CHole (None)
let proper_projection env sigma r ty =
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) in
let ctx, inst = decompose_prod_decls sigma ty in
let mor, args = destApp sigma inst in
let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
let app = mkApp (PropGlobal.proper_proj (),
Array.append args [| instarg |]) in
it_mkLambda_or_LetIn app ctx
let declare_projection name instance_id r =
let env = Global.env () in
let poly = Environ.is_polymorphic env r in
let sigma = Evd.from_env env in
let sigma,c = Evd.fresh_global env sigma r in
let ty = Retyping.get_type_of env sigma c in
let body = proper_projection env sigma c ty in
let sigma, typ = Typing.type_of env sigma body in
let ctx, typ = decompose_prod_decls sigma typ in
let typ =
let n =
let rec aux t =
match EConstr.kind sigma t with
| App (f, [| a ; a' ; rel; rel' |])
when isRefX env sigma (PropGlobal.respectful_ref ()) f ->
succ (aux rel')
| _ -> 0
in
let init =
match EConstr.kind sigma typ with
App (f, args) when isRefX env sigma (PropGlobal.respectful_ref ()) f ->
mkApp (f, fst (Array.chop (Array.length args - 2) args))
| _ -> typ
in aux init
in
let ctx,ccl = Reductionops.whd_decompose_prod_n env sigma (3 * n) typ
in it_mkProd ccl ctx
in
let types = Some (it_mkProd_or_LetIn typ ctx) in
let kind = Decls.(IsDefinition Definition) in
let impargs, udecl = [], UState.default_univ_decl in
let cinfo = Declare.CInfo.make ~name ~impargs ~typ:types () in
let info = Declare.Info.make ~kind ~udecl ~poly () in
let _r : GlobRef.t =
Declare.declare_definition ~cinfo ~info ~opaque:false ~body sigma
in ()
let add_setoid atts binders a aeq t n =
init_setoid ();
let () = declare_instance_refl atts binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in
let () = declare_instance_sym atts binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
let () = declare_instance_trans atts binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
in
anew_instance atts binders instance
[(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]);
(qualid_of_ident (Id.of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]);
(qualid_of_ident (Id.of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])]
let add_morphism_as_parameter atts m n : unit =
init_setoid ();
let instance_id = add_suffix n "_Proper" in
let env = Global.env () in
let evd = Evd.from_env env in
let poly = atts.polymorphic in
let kind = Decls.(IsAssumption Logical) in
let impargs, udecl = [], UState.default_univ_decl in
let evd, types = Rewrite.Internal.build_morphism_signature env evd m in
let evd, pe = Declare.prepare_parameter ~poly ~udecl ~types evd in
let cst = Declare.declare_constant ~name:instance_id ~kind (Declare.ParameterEntry pe) in
let cst = GlobRef.ConstRef cst in
Classes.Internal.add_instance
(PropGlobal.proper_class ()) Hints.empty_hint_info atts.locality cst;
declare_projection n instance_id cst
let add_morphism_interactive atts ~tactic m n : Declare.Proof.t =
init_setoid ();
let instance_id = add_suffix n "_Proper" in
let env = Global.env () in
let evd = Evd.from_env env in
let evd, morph = Rewrite.Internal.build_morphism_signature env evd m in
let poly = atts.polymorphic in
let kind = Decls.(IsDefinition Instance) in
let hook { Declare.Hook.S.dref; _ } = dref |> function
| GlobRef.ConstRef cst ->
Classes.Internal.add_instance (PropGlobal.proper_class ()) Hints.empty_hint_info
atts.locality (GlobRef.ConstRef cst);
declare_projection n instance_id (GlobRef.ConstRef cst)
| _ -> assert false
in
let hook = Declare.Hook.make hook in
Flags.silently
(fun () ->
let cinfo = Declare.CInfo.make ~name:instance_id ~typ:morph () in
let info = Declare.Info.make ~poly ~hook ~kind () in
let lemma = Declare.Proof.start ~cinfo ~info evd in
fst (Declare.Proof.by tactic lemma)) ()
let add_morphism atts ~tactic binders m s n =
init_setoid ();
let instance_id = add_suffix n "_Proper" in
let instance_name = (CAst.make @@ Name instance_id),None in
let instance_t =
CAst.make @@ CAppExpl
((Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper",None),
[cHole; s; m])
in
let _id, lemma = Classes.new_instance_interactive
~locality:atts.locality ~poly:atts.polymorphic
instance_name binders instance_t
~tac:tactic ~hook:(declare_projection n instance_id)
Hints.empty_hint_info None
in
lemma (* no instance body -> always open proof *)
|