1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Util
open Names
open Tac2expr
open Tac2print
(** Union find *)
module UF :
sig
type elt
type 'a t
val equal : elt -> elt -> bool
val create : unit -> 'a t
val fresh : 'a t -> elt
val find : elt -> 'a t -> (elt * 'a option)
val union : elt -> elt -> 'a t -> unit
val set : elt -> 'a -> 'a t -> unit
module Map : CSig.MapS with type key = elt
end
=
struct
type elt = int
let equal = Int.equal
module Map = Int.Map
type 'a node =
| Canon of int * 'a option
| Equiv of elt
type 'a t = {
mutable uf_data : 'a node array;
mutable uf_size : int;
}
let resize p =
if Int.equal (Array.length p.uf_data) p.uf_size then begin
let nsize = 2 * p.uf_size + 1 in
let v = Array.make nsize (Equiv 0) in
Array.blit p.uf_data 0 v 0 (Array.length p.uf_data);
p.uf_data <- v;
end
let create () = { uf_data = [||]; uf_size = 0 }
let fresh p =
resize p;
let n = p.uf_size in
p.uf_data.(n) <- (Canon (1, None));
p.uf_size <- n + 1;
n
let rec lookup n p =
let node = Array.get p.uf_data n in
match node with
| Canon (size, v) -> n, size, v
| Equiv y ->
let ((z, _, _) as res) = lookup y p in
if not (Int.equal z y) then Array.set p.uf_data n (Equiv z);
res
let find n p =
let (x, _, v) = lookup n p in (x, v)
let union x y p =
let ((x, size1, _) as xcan) = lookup x p in
let ((y, size2, _) as ycan) = lookup y p in
let xcan, ycan = if size1 < size2 then xcan, ycan else ycan, xcan in
let x, _, xnode = xcan in
let y, _, ynode = ycan in
assert (Option.is_empty xnode);
assert (Option.is_empty ynode);
p.uf_data.(x) <- Equiv y;
p.uf_data.(y) <- Canon (size1 + size2, None)
let set x v p =
let (x, s, v') = lookup x p in
assert (Option.is_empty v');
p.uf_data.(x) <- Canon (s, Some v)
end
module TVar = struct
type t = UF.elt
let equal = UF.equal
module Map = UF.Map
end
type mix_var =
| GVar of UF.elt
| LVar of int
type mix_type_scheme = int * mix_var glb_typexpr
(* Changing the APIs enough to get which variables are used in random genargs seems very hard
so instead we use mutation to detect them *)
type used = { mutable used : bool }
type t = {
env_var : (mix_type_scheme * used) Id.Map.t;
(** Type schemes of bound variables *)
env_cst : UF.elt glb_typexpr UF.t;
(** Unification state *)
env_als : UF.elt Id.Map.t ref;
(** Map user-facing type variables to unification variables *)
env_opn : bool;
(** Accept unbound type variables *)
env_rec : (KerName.t * int) Id.Map.t;
(** Recursive type definitions *)
env_strict : bool;
(** True iff in strict mode *)
}
let empty_env ?(strict=true) () = {
env_var = Id.Map.empty;
env_cst = UF.create ();
env_als = ref Id.Map.empty;
env_opn = true;
env_rec = Id.Map.empty;
env_strict = strict;
}
let env_strict env = env.env_strict
let set_rec self env = { env with env_rec = self }
let reject_unbound_tvar env = { env with env_opn = false }
let find_rec_var id env = Id.Map.find_opt id env.env_rec
let mem_var id env = Id.Map.mem id env.env_var
let find_var id env =
let t, used = Id.Map.find id env.env_var in
used.used <- true;
t
let is_used_var id env =
let _, {used} = Id.Map.find id env.env_var in
used
let bound_vars env = Id.Map.domain env.env_var
let get_variable0 mem var = match var with
| RelId qid ->
let open Libnames in
let open Locus in
let id = qualid_basename qid in
if qualid_is_ident qid && mem id then ArgVar CAst.(make ?loc:qid.CAst.loc id)
else
let kn =
try Tac2env.locate_ltac qid
with Not_found ->
CErrors.user_err ?loc:qid.CAst.loc Pp.(str "Unbound value " ++ pr_qualid qid)
in
ArgArg kn
| AbsKn kn -> ArgArg kn
let get_variable env var =
let mem id = Id.Map.mem id env.env_var in
get_variable0 mem var
let env_name env =
(* Generate names according to a provided environment *)
let mk num =
let base = num mod 26 in
let rem = num / 26 in
let name = String.make 1 (Char.chr (97 + base)) in
let suff = if Int.equal rem 0 then "" else string_of_int rem in
let name = name ^ suff in
name
in
let fold id elt acc = UF.Map.add elt (Id.to_string id) acc in
let vars = Id.Map.fold fold env.env_als.contents UF.Map.empty in
let vars = ref vars in
let rec fresh n =
let name = mk n in
if UF.Map.exists (fun _ name' -> String.equal name name') !vars then fresh (succ n)
else name
in
fun n ->
if UF.Map.mem n !vars then UF.Map.find n !vars
else
let ans = fresh 0 in
let () = vars := UF.Map.add n ans !vars in
ans
let fresh_id env = UF.fresh env.env_cst
let get_alias {CAst.loc;v=id} env =
try Id.Map.find id env.env_als.contents
with Not_found ->
if env.env_opn then
let n = fresh_id env in
let () = env.env_als := Id.Map.add id n env.env_als.contents in
n
else CErrors.user_err ?loc Pp.(str "Unbound type parameter " ++ Id.print id)
let push_name id t env = match id with
| Anonymous -> env
| Name id -> { env with env_var = Id.Map.add id (t, {used=false}) env.env_var }
let push_ids ids env =
let merge_fun _ fresh orig = match fresh, orig with
| None, None -> assert false
| Some x, _ -> Some (x, {used=false})
| None, Some x -> Some x
in
{ env with env_var = Id.Map.merge merge_fun ids env.env_var }
let rec subst_type subst (t : 'a glb_typexpr) = match t with
| GTypVar id -> subst id
| GTypArrow (t1, t2) -> GTypArrow (subst_type subst t1, subst_type subst t2)
| GTypRef (qid, args) ->
GTypRef (qid, List.map (fun t -> subst_type subst t) args)
(** First-order unification algorithm *)
let is_unfoldable kn = match snd (Tac2env.interp_type kn) with
| GTydDef (Some _) -> true
| GTydDef None | GTydAlg _ | GTydRec _ | GTydOpn -> false
let unfold env kn args =
let (nparams, def) = Tac2env.interp_type kn in
let def = match def with
| GTydDef (Some t) -> t
| _ -> assert false
in
let args = Array.of_list args in
let subst n = args.(n) in
subst_type subst def
(** View function, allows to ensure head normal forms *)
let rec kind env t = match t with
| GTypVar id ->
let (id, v) = UF.find id env.env_cst in
begin match v with
| None -> GTypVar id
| Some t -> kind env t
end
| GTypRef (Other kn, tl) ->
if is_unfoldable kn then kind env (unfold env kn tl) else t
| GTypArrow _ | GTypRef (Tuple _, _) -> t
(** Normalize unification variables without unfolding type aliases *)
let rec nf env t = match t with
| GTypVar id ->
let (id, v) = UF.find id env.env_cst in
begin match v with
| None -> GTypVar id
| Some t -> nf env t
end
| GTypRef (kn, tl) ->
let tl = List.map (fun t -> nf env t) tl in
GTypRef (kn, tl)
| GTypArrow (t, u) ->
let t = nf env t in
let u = nf env u in
GTypArrow (t, u)
let pr_glbtype env t =
let t = nf env t in
let name = env_name env in
pr_glbtype name t
let normalize env (count, vars) (t : TVar.t glb_typexpr) =
let get_var id =
try UF.Map.find id !vars
with Not_found ->
let () = assert env.env_opn in
let n = GTypVar !count in
let () = incr count in
let () = vars := UF.Map.add id n !vars in
n
in
let rec subst id = match UF.find id env.env_cst with
| id, None -> get_var id
| _, Some t -> subst_type subst t
in
subst_type subst t
exception Occur
let rec occur_check env id t = match kind env t with
| GTypVar id' -> if TVar.equal id id' then raise Occur
| GTypArrow (t1, t2) ->
let () = occur_check env id t1 in
occur_check env id t2
| GTypRef (kn, tl) ->
List.iter (fun t -> occur_check env id t) tl
exception CannotUnify of TVar.t glb_typexpr * TVar.t glb_typexpr
let unify_var env id t = match kind env t with
| GTypVar id' ->
if not (TVar.equal id id') then UF.union id id' env.env_cst
| GTypArrow _ | GTypRef _ ->
try
let () = occur_check env id t in
UF.set id t env.env_cst
with Occur -> raise (CannotUnify (GTypVar id, t))
let eq_or_tuple eq t1 t2 = match t1, t2 with
| Tuple n1, Tuple n2 -> Int.equal n1 n2
| Other o1, Other o2 -> eq o1 o2
| _ -> false
let rec unify0 env t1 t2 = match kind env t1, kind env t2 with
| GTypVar id, _ -> unify_var env id t2
| _, GTypVar id -> unify_var env id t1
| GTypArrow (t1, u1), GTypArrow (t2, u2) ->
let () = unify0 env t1 t2 in
unify0 env u1 u2
| GTypRef (kn1, tl1), GTypRef (kn2, tl2) ->
if eq_or_tuple KerName.equal kn1 kn2 then
List.iter2 (fun t1 t2 -> unify0 env t1 t2) tl1 tl2
else raise (CannotUnify (t1, t2))
| _ -> raise (CannotUnify (t1, t2))
let unify ?loc env t1 t2 =
try unify0 env t1 t2
with CannotUnify (u1, u2) ->
CErrors.user_err ?loc Pp.(str "This expression has type" ++ spc () ++ pr_glbtype env t1 ++
spc () ++ str "but an expression was expected of type" ++ spc () ++ pr_glbtype env t2)
let unify_arrow ?loc env ft args =
let ft0 = ft in
let rec iter ft args is_fun = match kind env ft, args with
| t, [] -> t
| GTypArrow (t1, ft), (loc, t2) :: args ->
let () = unify ?loc env t2 t1 in
iter ft args true
| GTypVar id, (_, t) :: args ->
let ft = GTypVar (fresh_id env) in
let () = unify ?loc env (GTypVar id) (GTypArrow (t, ft)) in
iter ft args true
| GTypRef _, _ :: _ ->
if is_fun then
CErrors.user_err ?loc Pp.(str "This function has type" ++ spc () ++ pr_glbtype env ft0 ++
spc () ++ str "and is applied to too many arguments")
else
CErrors.user_err ?loc Pp.(str "This expression has type" ++ spc () ++ pr_glbtype env ft0 ++
spc () ++ str "and is not a function")
in
iter ft args false
let rec fv_type f t accu = match t with
| GTypVar id -> f id accu
| GTypArrow (t1, t2) -> fv_type f t1 (fv_type f t2 accu)
| GTypRef (kn, tl) -> List.fold_left (fun accu t -> fv_type f t accu) accu tl
let fv_env env =
let rec f id accu = match UF.find id env.env_cst with
| id, None -> UF.Map.add id () accu
| _, Some t -> fv_type f t accu
in
let fold_var id ((_, t), _) accu =
let fmix id accu = match id with
| LVar _ -> accu
| GVar id -> f id accu
in
fv_type fmix t accu
in
let fv_var = Id.Map.fold fold_var env.env_var UF.Map.empty in
let fold_als _ id accu = f id accu in
Id.Map.fold fold_als !(env.env_als) fv_var
let abstract_var env (t : TVar.t glb_typexpr) : mix_type_scheme =
let fv = fv_env env in
let count = ref 0 in
let vars = ref UF.Map.empty in
let rec subst id =
let (id, t) = UF.find id env.env_cst in
match t with
| None ->
if UF.Map.mem id fv then GTypVar (GVar id)
else
begin try UF.Map.find id !vars
with Not_found ->
let n = !count in
let var = GTypVar (LVar n) in
let () = incr count in
let () = vars := UF.Map.add id var !vars in
var
end
| Some t -> subst_type subst t
in
let t = subst_type subst t in
(!count, t)
let monomorphic (t : TVar.t glb_typexpr) : mix_type_scheme =
let subst id = GTypVar (GVar id) in
(0, subst_type subst t)
let polymorphic ((n, t) : type_scheme) : mix_type_scheme =
let subst id = GTypVar (LVar id) in
(n, subst_type subst t)
|