1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
open NumCompat
open Sos
open Sos_types
open Sos_lib
module Mc = Micromega
module C2Ml = Mutils.CoqToCaml
type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option
let flags = [Open_append; Open_binary; Open_creat]
let chan = open_out_gen flags 0o666 "trace"
module M = struct
open Mc
let rec expr_to_term = function
| PEc z -> Const (C2Ml.q_to_num z)
| PEX v -> Var ("x" ^ string_of_int (C2Ml.index v))
| PEmul (p1, p2) ->
let p1 = expr_to_term p1 in
let p2 = expr_to_term p2 in
let res = Mul (p1, p2) in
res
| PEadd (p1, p2) -> Add (expr_to_term p1, expr_to_term p2)
| PEsub (p1, p2) -> Sub (expr_to_term p1, expr_to_term p2)
| PEpow (p, n) -> Pow (expr_to_term p, C2Ml.n n)
| PEopp p -> Opp (expr_to_term p)
end
open M
let partition_expr l =
let rec f i = function
| [] -> ([], [], [])
| (e, k) :: l -> (
let eq, ge, neq = f (i + 1) l in
match k with
| Mc.Equal -> ((e, i) :: eq, ge, neq)
| Mc.NonStrict -> (eq, (e, Axiom_le i) :: ge, neq)
| Mc.Strict ->
(* e > 0 == e >= 0 /\ e <> 0 *)
(eq, (e, Axiom_lt i) :: ge, (e, Axiom_lt i) :: neq)
| Mc.NonEqual -> (eq, ge, (e, Axiom_eq i) :: neq) )
(* Not quite sure -- Coq interface has changed *)
in
f 0 l
let rec sets_of_list l =
match l with
| [] -> [[]]
| e :: l ->
let s = sets_of_list l in
s @ List.map (fun s0 -> e :: s0) s
(* The exploration is probably not complete - for simple cases, it works... *)
let real_nonlinear_prover d l =
let l = List.map (fun (e, op) -> (Mc.denorm e, op)) l in
try
let eq, ge, neq = partition_expr l in
let rec elim_const = function
| [] -> []
| (x, y) :: l ->
let p = poly_of_term (expr_to_term x) in
if poly_isconst p then elim_const l else (p, y) :: elim_const l
in
let eq = elim_const eq in
let peq = List.map fst eq in
let pge =
List.map (fun (e, psatz) -> (poly_of_term (expr_to_term e), psatz)) ge
in
let monoids =
List.map
(fun m ->
( List.fold_right
(fun (p, kd) y ->
let p = poly_of_term (expr_to_term p) in
match kd with
| Axiom_lt i -> poly_mul p y
| Axiom_eq i -> poly_mul (poly_pow p 2) y
| _ -> failwith "monoids")
m (poly_const Q.one)
, List.map snd m ))
(sets_of_list neq)
in
let cert_ideal, cert_cone, monoid =
deepen_until d
(fun d ->
tryfind
(fun m ->
let ci, cc =
real_positivnullstellensatz_general false d peq pge
(poly_neg (fst m))
in
(ci, cc, snd m))
monoids)
0
in
let proofs_ideal =
List.map2
(fun q i -> Eqmul (term_of_poly q, Axiom_eq i))
cert_ideal (List.map snd eq)
in
let proofs_cone = List.map term_of_sos cert_cone in
let proof_ne =
let neq, lt =
List.partition (function Axiom_eq _ -> true | _ -> false) monoid
in
let sq =
match
List.map (function Axiom_eq i -> i | _ -> failwith "error") neq
with
| [] -> Rational_lt Q.one
| l -> Monoid l
in
List.fold_right (fun x y -> Product (x, y)) lt sq
in
let proof =
end_itlist
(fun s t -> Sum (s, t))
((proof_ne :: proofs_ideal) @ proofs_cone)
in
S (Some proof)
with
| Sos_lib.TooDeep -> S None
| any -> F (Printexc.to_string any)
(* This is somewhat buggy, over Z, strict inequality vanish... *)
let pure_sos l =
let l = List.map (fun (e, o) -> (Mc.denorm e, o)) l in
(* If there is no strict inequality,
I should nonetheless be able to try something - over Z > is equivalent to -1 >= *)
try
let l = List.combine l (CList.interval 0 (List.length l - 1)) in
let lt, i =
try List.find (fun (x, _) -> snd x = Mc.Strict) l
with Not_found -> List.hd l
in
let plt = poly_neg (poly_of_term (expr_to_term (fst lt))) in
let n, polys = sumofsquares plt in
(* n * (ci * pi^2) *)
let pos =
Product
( Rational_lt n
, List.fold_right
(fun (c, p) rst ->
Sum (Product (Rational_lt c, Square (term_of_poly p)), rst))
polys (Rational_lt Q.zero) )
in
let proof = Sum (Axiom_lt i, pos) in
(* let s,proof' = scale_certificate proof in
let cert = snd (cert_of_pos proof') in *)
S (Some proof)
with (* | Sos.CsdpNotFound -> F "Sos.CsdpNotFound" *)
| any ->
(* May be that could be refined *) S None
let run_prover prover pb =
match prover with
| "real_nonlinear_prover", Some d -> real_nonlinear_prover d pb
| "pure_sos", None -> pure_sos pb
| prover, _ ->
Printf.printf "unknown prover: %s\n" prover;
exit 1
let main () =
try
let (prover, poly) = (input_value stdin : provername * micromega_polys) in
let cert = run_prover prover poly in
(* Printf.fprintf chan "%a -> %a" print_list_term poly output_csdp_certificate cert ;
close_out chan ; *)
output_value stdout (cert : csdp_certificate);
flush stdout;
Marshal.to_channel chan (cert : csdp_certificate) [];
flush chan;
exit 0
with any ->
Printf.fprintf chan "error %s" (Printexc.to_string any);
exit 1
;;
let _ = main () in
()
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|