1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Building recursive polynom operations from a type of coefficients *)
module type Coef = sig
type t
val equal : t -> t -> bool
val lt : t -> t -> bool
val le : t -> t -> bool
val abs : t -> t
val plus : t -> t -> t
val mult : t -> t -> t
val sub : t -> t -> t
val opp : t -> t
val div : t -> t -> t
val modulo : t -> t -> t
val puis : t -> int -> t
val pgcd : t -> t -> t
val hash : t -> int
val of_num : Q.t -> t
val to_string : t -> string
end
module type S = sig
type coef
type variable = int
type t = Pint of coef | Prec of variable * t array
val of_num : Q.t -> t
val x : variable -> t
val monome : variable -> int -> t
val is_constantP : t -> bool
val is_zero : t -> bool
val max_var_pol : t -> variable
val max_var_pol2 : t -> variable
val max_var : t array -> variable
val equal : t -> t -> bool
val norm : t -> t
val deg : variable -> t -> int
val deg_total : t -> int
val copyP : t -> t
val coef : variable -> int -> t -> t
val plusP : t -> t -> t
val content : t -> coef
val div_int : t -> coef -> t
val vire_contenu : t -> t
val vars : t -> variable list
val int_of_Pint : t -> coef
val multx : int -> variable -> t -> t
val multP : t -> t -> t
val deriv : variable -> t -> t
val oppP : t -> t
val moinsP : t -> t -> t
val puisP : t -> int -> t
val ( @@ ) : t -> t -> t
val ( -- ) : t -> t -> t
val ( ^^ ) : t -> int -> t
val coefDom : variable -> t -> t
val coefConst : variable -> t -> t
val remP : variable -> t -> t
val coef_int_tete : t -> coef
val normc : t -> t
val coef_constant : t -> coef
val univ : bool ref
val string_of_var : int -> string
val nsP : int ref
val to_string : t -> string
val printP : t -> unit
val print_tpoly : t array -> unit
val print_lpoly : t list -> unit
val quo_rem_pol : t -> t -> variable -> t * t
val div_pol : t -> t -> variable -> t
val divP : t -> t -> t
val div_pol_rat : t -> t -> bool
val pseudo_div : t -> t -> variable -> t * t * int * t
val pgcdP : t -> t -> t
val pgcd_pol : t -> t -> variable -> t
val content_pol : t -> variable -> t
val pgcd_coef_pol : t -> t -> variable -> t
val pgcd_pol_rec : t -> t -> variable -> t
val gcd_sub_res : t -> t -> variable -> t
val gcd_sub_res_rec : t -> t -> t -> t -> int -> variable -> t
val lazard_power : t -> t -> int -> variable -> t
val hash : t -> int
module Hashpol : Hashtbl.S with type key=t
end
module Make (C:Coef) : S with type coef = C.t
|