1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
module CVars = Vars
open Ltac_plugin
open Pp
open Util
open Names
open Constr
open EConstr
open Vars
open CClosure
open Environ
open Glob_term
open Locus
open Tacexpr
open Coqlib
open Mod_subst
open Tacinterp
open Libobject
open Printer
open Declare
open Ring_ast
open Proofview.Notations
let error msg = CErrors.user_err Pp.(str msg)
(****************************************************************************)
(* controlled reduction *)
type protect_flag = Eval|Prot|Rec
type protection = Environ.env -> Evd.evar_map -> EConstr.t -> GlobRef.t -> (Int.t -> protect_flag) option
let global_head_of_constr sigma c =
let f, args = decompose_app sigma c in
try fst (EConstr.destRef sigma f)
with DestKO -> CErrors.anomaly (str "global_head_of_constr.")
let global_of_constr_nofail sigma c =
try fst @@ EConstr.destRef sigma c
with DestKO -> GlobRef.VarRef (Id.of_string "dummy")
let mk_atom c = CClosure.mk_atom (EConstr.Unsafe.to_constr c)
let rec mk_clos_but sigma f_map n t =
let (f, args) = EConstr.decompose_app sigma t in
match f_map (global_of_constr_nofail sigma f) with
| Some tag ->
let map i t = tag_arg sigma f_map n (tag i) t in
if Array.is_empty args then map (-1) f
else mk_red (FApp (map (-1) f, Array.mapi map args))
| None -> mk_atom t
and tag_arg sigma f_map n tag c = match tag with
| Eval -> mk_clos (Esubst.subs_id n, UVars.Instance.empty) (EConstr.Unsafe.to_constr c)
| Prot -> mk_atom c
| Rec -> mk_clos_but sigma f_map n c
let interp_map env l t =
let eq g1 g2 = QGlobRef.equal env g1 g2 in
try Some (List.assoc_f eq t l) with Not_found -> None
let protect_maps : protection String.Map.t ref = ref String.Map.empty
let add_map s m = protect_maps := String.Map.add s m !protect_maps
let lookup_map map =
try String.Map.find map !protect_maps
with Not_found ->
CErrors.user_err (str "Map " ++ qs map ++ str "not found.")
let protect_red map env sigma c =
let tab = create_tab () in
let infos = Evarutil.create_clos_infos env sigma RedFlags.all in
let map = lookup_map map env sigma c in
let rec eval n c = match EConstr.kind sigma c with
| Prod (na, t, u) -> EConstr.mkProd (na, eval n t, eval (n + 1) u)
| _ -> EConstr.of_constr @@ norm_val infos tab (mk_clos_but sigma map n c)
in
eval 0 c
let protect_tac map =
Tactics.reduct_option ~check:false (protect_red map,DEFAULTcast) None
let protect_tac_in map id =
Tactics.reduct_option ~check:false (protect_red map,DEFAULTcast) (Some(id, Locus.InHyp))
(****************************************************************************)
let rec closed_under sigma cset t =
try
let (gr, _) = destRef sigma t in
GlobRef.Set_env.mem gr cset
with DestKO ->
match EConstr.kind sigma t with
| Cast(c,_,_) -> closed_under sigma cset c
| App(f,l) -> closed_under sigma cset f && Array.for_all (closed_under sigma cset) l
| _ -> false
let closed_term args _ = match args with
| [t; l] ->
let t = Option.get (Value.to_constr t) in
let l = List.map (fun c -> Value.cast (Genarg.topwit Stdarg.wit_ref) c) (Option.get (Value.to_list l)) in
Proofview.tclEVARMAP >>= fun sigma ->
let cs = List.fold_right GlobRef.Set_env.add l GlobRef.Set_env.empty in
if closed_under sigma cs t then Proofview.tclUNIT () else Tacticals.tclFAIL (mt())
| _ -> assert false
let closed_term_ast =
let tacname = {
mltac_plugin = "coq-core.plugins.ring";
mltac_tactic = "closed_term";
} in
let () = Tacenv.register_ml_tactic tacname [|closed_term|] in
let tacname = {
mltac_name = tacname;
mltac_index = 0;
} in
fun l ->
let l = List.map (fun gr -> ArgArg(Loc.tag gr)) l in
CAst.make (TacFun
([Name(Id.of_string"t")],
CAst.make (TacML (tacname,
[TacGeneric (None, Genarg.in_gen (Genarg.glbwit Stdarg.wit_constr) (DAst.make @@ GVar(Id.of_string"t"),None));
TacGeneric (None, Genarg.in_gen (Genarg.glbwit (Genarg.wit_list Stdarg.wit_ref)) l)]))))
(*
let _ = add_tacdef false ((Loc.ghost,Id.of_string"ring_closed_term"
*)
(****************************************************************************)
let ic env sigma c =
let c, uctx = Constrintern.interp_constr env sigma c in
(Evd.from_ctx uctx, c)
let ic_unsafe env sigma c = (*FIXME remove *)
fst (Constrintern.interp_constr env sigma c)
let decl_constant name univs c =
let open Constr in
let vars = CVars.universes_of_constr c in
let univs = UState.restrict_universe_context univs vars in
let () = Global.push_context_set ~strict:true univs in
let types = (Typeops.infer (Global.env ()) c).uj_type in
let univs = UState.Monomorphic_entry Univ.ContextSet.empty, UnivNames.empty_binders in
(* UnsafeMonomorphic: we always do poly:false *)
UnsafeMonomorphic.mkConst
(declare_constant ~name
~kind:Decls.(IsProof Lemma)
(DefinitionEntry (definition_entry ~opaque:true ~types ~univs c)))
let decl_constant na suff univs c =
let na = Namegen.next_global_ident_away (Nameops.add_suffix na suff) Id.Set.empty in
decl_constant na univs c
(* Calling a global tactic *)
let ltac_call tac (args:glob_tactic_arg list) =
CAst.make @@ TacArg (TacCall (CAst.make (ArgArg(Loc.tag @@ Lazy.force tac),args)))
let constr_of sigma v = match Value.to_constr v with
| Some c -> EConstr.to_constr sigma c
| None -> failwith "Ring.exec_tactic: anomaly"
let tactic_res = ref [||]
let get_res =
let open Tacexpr in
let name = { mltac_plugin = "coq-core.plugins.ring"; mltac_tactic = "get_res"; } in
let entry = { mltac_name = name; mltac_index = 0 } in
let tac args ist =
let n = Tacinterp.Value.cast (Genarg.topwit Stdarg.wit_int) (List.hd args) in
let init i = Id.Map.find (Id.of_string ("x" ^ string_of_int i)) ist.lfun in
tactic_res := Array.init n init;
Proofview.tclUNIT ()
in
Tacenv.register_ml_tactic name [| tac |];
entry
let exec_tactic env sigma n f args =
let fold arg (i, vars, lfun) =
let id = Id.of_string ("x" ^ string_of_int i) in
let x = Reference (ArgVar CAst.(make id)) in
(succ i, x :: vars, Id.Map.add id (Value.of_constr arg) lfun)
in
let (_, args, lfun) = List.fold_right fold args (0, [], Id.Map.empty) in
let ist = { (Tacinterp.default_ist ()) with Tacinterp.lfun = lfun; } in
(* Build the getter *)
let lid = List.init n (fun i -> Id.of_string("x"^string_of_int i)) in
let n = Genarg.in_gen (Genarg.glbwit Stdarg.wit_int) n in
let get_res = CAst.make (TacML (get_res, [TacGeneric (None, n)])) in
let getter = Tacexp (CAst.make (TacFun (List.map (fun n -> Name n) lid, get_res))) in
(* Evaluate the whole result *)
let _, pv = Proofview.init sigma [env, EConstr.mkProp] in
let tac = Tacinterp.eval_tactic_ist ist (ltac_call f (args@[getter])) in
let ((), pv, _, _) = Proofview.apply ~name:(Id.of_string "ring") ~poly:false (Global.env ()) tac pv in
let sigma = Evd.minimize_universes (Proofview.return pv) in
let nf c = constr_of sigma c in
Array.map nf !tactic_res, Evd.universe_context_set sigma
let gen_constant n = lazy (EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref n)))
let gen_reference n = lazy (Coqlib.lib_ref n)
let coq_mk_Setoid = gen_constant "plugins.ring.Build_Setoid_Theory"
let coq_None = gen_reference "core.option.None"
let coq_Some = gen_reference "core.option.Some"
let coq_eq = gen_constant "core.eq.type"
let coq_cons = gen_reference "core.list.cons"
let coq_nil = gen_reference "core.list.nil"
let lapp f args = mkApp(Lazy.force f,args)
let plapp sigma f args =
let sigma, fc = Evd.fresh_global (Global.env ()) sigma (Lazy.force f) in
sigma, mkApp(fc,args)
let dest_rel0 sigma t =
match EConstr.kind sigma t with
| App(f,args) when Array.length args >= 2 ->
let rel = mkApp(f,Array.sub args 0 (Array.length args - 2)) in
if closed0 sigma rel then
(rel,args.(Array.length args - 2),args.(Array.length args - 1))
else error "ring: cannot find relation (not closed)"
| _ -> error "ring: cannot find relation"
let rec dest_rel sigma t =
match EConstr.kind sigma t with
| Prod(_,_,c) -> dest_rel sigma c
| _ -> dest_rel0 sigma t
(****************************************************************************)
(* Library linking *)
let plugin_dir = "setoid_ring"
let cdir = ["Coq";plugin_dir]
let plugin_modules =
List.map (fun d -> cdir@d)
[["Ring_theory"];["Ring_polynom"]; ["Ring_tac"];["InitialRing"];
["Field_tac"]; ["Field_theory"]
]
let my_constant c =
lazy (EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Global.env ()) @@ Coqlib.gen_reference_in_modules "Ring" plugin_modules c))
[@@ocaml.warning "-3"]
let my_reference c =
lazy (Coqlib.gen_reference_in_modules "Ring" plugin_modules c)
[@@ocaml.warning "-3"]
let znew_ring_path =
DirPath.make (List.map Id.of_string ["InitialRing";plugin_dir;"Coq"])
let zltac s =
lazy(KerName.make (ModPath.MPfile znew_ring_path) (Label.make s))
let mk_cst l s = lazy (Coqlib.coq_reference "ring" l s) [@@ocaml.warning "-3"]
let pol_cst s = mk_cst [plugin_dir;"Ring_polynom"] s
(* Ring theory *)
(* almost_ring defs *)
let coq_almost_ring_theory = my_constant "almost_ring_theory"
(* setoid and morphism utilities *)
let coq_eq_setoid = my_reference "Eqsth"
let coq_eq_morph = my_reference "Eq_ext"
let coq_eq_smorph = my_reference "Eq_s_ext"
(* ring -> almost_ring utilities *)
let coq_ring_theory = my_constant "ring_theory"
let coq_mk_reqe = my_constant "mk_reqe"
(* semi_ring -> almost_ring utilities *)
let coq_semi_ring_theory = my_constant "semi_ring_theory"
let coq_mk_seqe = my_constant "mk_seqe"
let coq_abstract = my_constant"Abstract"
let coq_comp = my_constant"Computational"
let coq_morph = my_constant"Morphism"
(* power function *)
let ltac_inv_morph_nothing = zltac"inv_morph_nothing"
(* hypothesis *)
let coq_mkhypo = my_reference "mkhypo"
let coq_hypo = my_reference "hypo"
(* Equality: do not evaluate but make recursive call on both sides *)
let map_with_eq arg_map env sigma c =
let (req,_,_) = dest_rel sigma c in
interp_map env
((global_head_of_constr sigma req,(function -1->Prot|_->Rec))::
List.map (fun (c,map) -> (Lazy.force c,map)) arg_map)
let map_without_eq arg_map env _ _ =
interp_map env (List.map (fun (c,map) -> (Lazy.force c,map)) arg_map)
let _ = add_map "ring"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
my_reference "IDphi", (function _->Eval);
my_reference "gen_phiZ", (function _->Eval);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|12|14->Eval|11|13->Rec|_->Prot);
pol_cst "Pphi_pow",
(function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot);
(* PEeval: evaluate polynomial, protect ring
operations and make recursive call on the var map *)
pol_cst "PEeval", (function -1|10|13->Eval|8|12->Rec|_->Prot)])
(****************************************************************************)
(* Ring database *)
module Cmap = Map.Make(Constr)
let from_carrier = Summary.ref Cmap.empty ~name:"ring-tac-carrier-table"
let print_rings () =
Feedback.msg_notice (strbrk "The following ring structures have been declared:");
Cmap.iter (fun _carrier ring ->
let env = Global.env () in
let sigma = Evd.from_env env in
Feedback.msg_notice
(hov 2
(Ppconstr.pr_id ring.ring_name ++ spc() ++
str"with carrier "++ pr_constr_env env sigma ring.ring_carrier++spc()++
str"and equivalence relation "++ pr_constr_env env sigma ring.ring_req))
) !from_carrier
let ring_for_carrier r = Cmap.find r !from_carrier
let find_ring_structure env sigma l =
match l with
| t::cl' ->
let ty = Retyping.get_type_of env sigma t in
let check c =
let ty' = Retyping.get_type_of env sigma c in
if not (Reductionops.is_conv env sigma ty ty') then
CErrors.user_err
(str"Arguments of ring_simplify do not have all the same type.")
in
List.iter check cl';
(try ring_for_carrier (EConstr.to_constr ~abort_on_undefined_evars:false sigma ty)
with Not_found ->
CErrors.user_err
(str"Cannot find a declared ring structure over"++
spc() ++ str"\"" ++ pr_econstr_env env sigma ty ++ str"\"."))
| [] -> assert false
let add_entry e =
from_carrier := Cmap.add e.ring_carrier e !from_carrier
let subst_th (subst,th) =
let c' = subst_mps subst th.ring_carrier in
let eq' = subst_mps subst th.ring_req in
let set' = subst_mps subst th.ring_setoid in
let ext' = subst_mps subst th.ring_ext in
let morph' = subst_mps subst th.ring_morph in
let th' = subst_mps subst th.ring_th in
let thm1' = subst_mps subst th.ring_lemma1 in
let thm2' = subst_mps subst th.ring_lemma2 in
let tac'= Tacsubst.subst_tactic subst th.ring_cst_tac in
let pow_tac'= Tacsubst.subst_tactic subst th.ring_pow_tac in
let pretac'= Tacsubst.subst_tactic subst th.ring_pre_tac in
let posttac'= Tacsubst.subst_tactic subst th.ring_post_tac in
if c' == th.ring_carrier &&
eq' == th.ring_req &&
Constr.equal set' th.ring_setoid &&
ext' == th.ring_ext &&
morph' == th.ring_morph &&
th' == th.ring_th &&
thm1' == th.ring_lemma1 &&
thm2' == th.ring_lemma2 &&
tac' == th.ring_cst_tac &&
pow_tac' == th.ring_pow_tac &&
pretac' == th.ring_pre_tac &&
posttac' == th.ring_post_tac then th
else
{ ring_name = th.ring_name;
ring_carrier = c';
ring_req = eq';
ring_setoid = set';
ring_ext = ext';
ring_morph = morph';
ring_th = th';
ring_cst_tac = tac';
ring_pow_tac = pow_tac';
ring_lemma1 = thm1';
ring_lemma2 = thm2';
ring_pre_tac = pretac';
ring_post_tac = posttac' }
let theory_to_obj : ring_info -> obj =
declare_object @@ global_object_nodischarge "tactic-new-ring-theory"
~cache:add_entry
~subst:(Some subst_th)
let setoid_of_relation env sigma a r =
try
let sigma, refl = Rewrite.get_reflexive_proof env sigma a r in
let sigma, sym = Rewrite.get_symmetric_proof env sigma a r in
let sigma, trans = Rewrite.get_transitive_proof env sigma a r in
sigma, lapp coq_mk_Setoid [|a ; r ; refl; sym; trans |]
with Not_found ->
CErrors.user_err (str "Cannot find a setoid structure for relation " ++ pr_econstr_env env sigma r ++ str ".")
let op_morph r add mul opp req m1 m2 m3 =
lapp coq_mk_reqe [| r; add; mul; opp; req; m1; m2; m3 |]
let op_smorph r add mul req m1 m2 =
lapp coq_mk_seqe [| r; add; mul; req; m1; m2 |]
let ring_equality env sigma (r,add,mul,opp,req) =
match EConstr.kind sigma req with
| App (f, [| _ |]) when eq_constr_nounivs sigma f (Lazy.force coq_eq) ->
let sigma, setoid = plapp sigma coq_eq_setoid [|r|] in
let sigma, op_morph =
match opp with
Some opp -> plapp sigma coq_eq_morph [|r;add;mul;opp|]
| None -> plapp sigma coq_eq_smorph [|r;add;mul|] in
let sigma, setoid = Typing.solve_evars env sigma setoid in
let sigma, op_morph = Typing.solve_evars env sigma op_morph in
(setoid,op_morph)
| _ ->
let sigma, setoid = setoid_of_relation env sigma r req in
let signature = [Some (r,Some req);Some (r,Some req)],Some(r,Some req) in
let add_m, add_m_lem =
try Rewrite.Internal.default_morphism env sigma signature add
with Not_found ->
CErrors.user_err (str "Ring addition " ++ pr_econstr_env env sigma add ++ str " should be declared as a morphism.") in
let mul_m, mul_m_lem =
try Rewrite.Internal.default_morphism env sigma signature mul
with Not_found ->
CErrors.user_err (str "Ring multiplication " ++ pr_econstr_env env sigma mul ++ str " should be declared as a morphism.") in
let op_morph =
match opp with
| Some opp ->
(let opp_m,opp_m_lem =
try Rewrite.Internal.default_morphism env sigma ([Some(r,Some req)],Some(r,Some req)) opp
with Not_found ->
CErrors.user_err (str "Ring opposite " ++ pr_econstr_env env sigma opp ++ str " should be declared as a morphism.") in
let op_morph =
op_morph r add mul opp req add_m_lem mul_m_lem opp_m_lem in
Flags.if_verbose
Feedback.msg_info
(str"Using setoid \""++ pr_econstr_env env sigma req++str"\""++spc()++
str"and morphisms \""++pr_econstr_env env sigma add_m ++
str"\","++spc()++ str"\""++pr_econstr_env env sigma mul_m++
str"\""++spc()++str"and \""++pr_econstr_env env sigma opp_m++
str"\"");
op_morph)
| None ->
(Flags.if_verbose
Feedback.msg_info
(str"Using setoid \""++pr_econstr_env env sigma req ++str"\"" ++ spc() ++
str"and morphisms \""++pr_econstr_env env sigma add_m ++
str"\""++spc()++str"and \""++
pr_econstr_env env sigma mul_m++str"\"");
op_smorph r add mul req add_m_lem mul_m_lem) in
(setoid,op_morph)
let build_setoid_params env sigma r add mul opp req eqth =
match eqth with
Some th -> th
| None -> ring_equality env sigma (r,add,mul,opp,req)
let dest_ring env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match EConstr.kind sigma th_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req|])
when eq_constr_nounivs sigma f (Lazy.force coq_almost_ring_theory) ->
(None,r,zero,one,add,mul,Some sub,Some opp,req)
| App(f,[|r;zero;one;add;mul;req|])
when eq_constr_nounivs sigma f (Lazy.force coq_semi_ring_theory) ->
(Some true,r,zero,one,add,mul,None,None,req)
| App(f,[|r;zero;one;add;mul;sub;opp;req|])
when eq_constr_nounivs sigma f (Lazy.force coq_ring_theory) ->
(Some false,r,zero,one,add,mul,Some sub,Some opp,req)
| _ -> error "bad ring structure"
let reflect_coeff rkind =
(* We build an ill-typed terms on purpose... *)
match rkind with
Abstract -> Lazy.force coq_abstract
| Computational c -> lapp coq_comp [|c|]
| Morphism m -> lapp coq_morph [|m|]
let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac =
match cst_tac with
Some (CstTac t) -> Tacintern.glob_tactic t
| Some (Closed lc) ->
closed_term_ast (List.map Smartlocate.global_with_alias lc)
| None ->
let t = ArgArg(Loc.tag @@ Lazy.force ltac_inv_morph_nothing) in
CAst.make (TacArg (TacCall (CAst.make (t,[]))))
let make_hyp env sigma c =
let t = Retyping.get_type_of env sigma c in
plapp sigma coq_mkhypo [|t;c|]
let make_hyp_list env sigma lH =
let sigma, carrier = Evd.fresh_global env sigma (Lazy.force coq_hypo) in
let sigma, l =
List.fold_right
(fun c (sigma,l) ->
let sigma, c = make_hyp env sigma c in
plapp sigma coq_cons [|carrier; c; l|]) lH
(plapp sigma coq_nil [|carrier|])
in
let sigma, l' = Typing.solve_evars env sigma l in
sigma, l'
let interp_power env sigma pow =
let sigma, carrier = Evd.fresh_global env sigma (Lazy.force coq_hypo) in
match pow with
| None ->
let t = ArgArg(Loc.tag (Lazy.force ltac_inv_morph_nothing)) in
let sigma, c = plapp sigma coq_None [|carrier|] in
sigma, (CAst.make (TacArg (TacCall (CAst.make (t,[])))), c)
| Some (tac, spec) ->
let tac =
match tac with
| CstTac t -> Tacintern.glob_tactic t
| Closed lc ->
closed_term_ast (List.map Smartlocate.global_with_alias lc) in
let spec = ic_unsafe env sigma spec in
let sigma, spec = make_hyp env sigma spec in
let sigma, pow = plapp sigma coq_Some [|carrier; spec|] in
sigma, (tac, pow)
let interp_sign env sigma sign =
let sigma, carrier = Evd.fresh_global env sigma (Lazy.force coq_hypo) in
match sign with
| None -> plapp sigma coq_None [|carrier|]
| Some spec ->
let sigma, spec = make_hyp env sigma (ic_unsafe env sigma spec) in
plapp sigma coq_Some [|carrier;spec|]
(* Same remark on ill-typed terms ... *)
let interp_div env sigma div =
let sigma, carrier = Evd.fresh_global env sigma (Lazy.force coq_hypo) in
match div with
| None -> plapp sigma coq_None [|carrier|]
| Some spec ->
let sigma, spec = make_hyp env sigma (ic_unsafe env sigma spec) in
plapp sigma coq_Some [|carrier;spec|]
(* Same remark on ill-typed terms ... *)
let add_theory0 env sigma name rth eqth morphth cst_tac (pre,post) power sign div =
check_required_library (cdir@["Ring_base"]);
let (kind,r,zero,one,add,mul,sub,opp,req) = dest_ring env sigma rth in
let (sth,ext) = build_setoid_params env sigma r add mul opp req eqth in
let sigma, (pow_tac, pspec) = interp_power env sigma power in
let sigma, sspec = interp_sign env sigma sign in
let sigma, dspec = interp_div env sigma div in
let rk = reflect_coeff morphth in
let params,ctx =
exec_tactic env sigma 5 (zltac "ring_lemmas")
[sth;ext;rth;pspec;sspec;dspec;rk] in
let lemma1 = params.(3) in
let lemma2 = params.(4) in
let lemma1 =
decl_constant name "_ring_lemma1" ctx lemma1 in
let lemma2 =
decl_constant name "_ring_lemma2" ctx lemma2 in
let cst_tac =
interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
let pretac =
match pre with
Some t -> Tacintern.glob_tactic t
| _ -> CAst.make (TacId []) in
let posttac =
match post with
Some t -> Tacintern.glob_tactic t
| _ -> CAst.make (TacId []) in
let r = EConstr.to_constr sigma r in
let req = EConstr.to_constr sigma req in
let sth = EConstr.to_constr sigma sth in
let _ =
Lib.add_leaf
(theory_to_obj
{ ring_name = name;
ring_carrier = r;
ring_req = req;
ring_setoid = sth;
ring_ext = params.(1);
ring_morph = params.(2);
ring_th = params.(0);
ring_cst_tac = cst_tac;
ring_pow_tac = pow_tac;
ring_lemma1 = lemma1;
ring_lemma2 = lemma2;
ring_pre_tac = pretac;
ring_post_tac = posttac }) in
()
let ic_coeff_spec env sigma = function
| Computational t -> Computational (ic_unsafe env sigma t)
| Morphism t -> Morphism (ic_unsafe env sigma t)
| Abstract -> Abstract
let set_once s r v =
if Option.is_empty !r then r := Some v else error (s^" cannot be set twice")
let process_ring_mods env sigma l =
let kind = ref None in
let set = ref None in
let cst_tac = ref None in
let pre = ref None in
let post = ref None in
let sign = ref None in
let power = ref None in
let div = ref None in
List.iter(function
Ring_kind k -> set_once "ring kind" kind (ic_coeff_spec env sigma k)
| Const_tac t -> set_once "tactic recognizing constants" cst_tac t
| Pre_tac t -> set_once "preprocess tactic" pre t
| Post_tac t -> set_once "postprocess tactic" post t
| Setoid(sth,ext) -> set_once "setoid" set (ic_unsafe env sigma sth,ic_unsafe env sigma ext)
| Pow_spec(t,spec) -> set_once "power" power (t,spec)
| Sign_spec t -> set_once "sign" sign t
| Div_spec t -> set_once "div" div t) l;
let k = match !kind with Some k -> k | None -> Abstract in
(k, !set, !cst_tac, !pre, !post, !power, !sign, !div)
let add_theory id rth l =
let env = Global.env () in
let sigma = Evd.from_env env in
let sigma, rth = ic env sigma rth in
let (k,set,cst,pre,post,power,sign, div) = process_ring_mods env sigma l in
add_theory0 env sigma id rth set k cst (pre,post) power sign div
(*****************************************************************************)
(* The tactics consist then only in a lookup in the ring database and
call the appropriate ltac. *)
let make_args_list sigma rl t =
match rl with
| [] -> let (_,t1,t2) = dest_rel0 sigma t in [t1;t2]
| _ -> rl
let make_term_list env sigma carrier rl =
let sigma, l = List.fold_right
(fun x (sigma,l) -> plapp sigma coq_cons [|carrier;x;l|]) rl
(plapp sigma coq_nil [|carrier|])
in
Typing.solve_evars env sigma l
let carg c = Tacinterp.Value.of_constr (EConstr.of_constr c)
let tacarg expr =
Tacinterp.Value.of_closure (Tacinterp.default_ist ()) expr
let ltac_ring_structure e =
let req = carg e.ring_req in
let sth = carg e.ring_setoid in
let ext = carg e.ring_ext in
let morph = carg e.ring_morph in
let th = carg e.ring_th in
let cst_tac = tacarg e.ring_cst_tac in
let pow_tac = tacarg e.ring_pow_tac in
let lemma1 = carg e.ring_lemma1 in
let lemma2 = carg e.ring_lemma2 in
let pretac = tacarg (CAst.make (TacFun ([Anonymous],e.ring_pre_tac))) in
let posttac = tacarg (CAst.make (TacFun ([Anonymous],e.ring_post_tac))) in
[req;sth;ext;morph;th;cst_tac;pow_tac;
lemma1;lemma2;pretac;posttac]
let ring_lookup (f : Value.t) lH rl t =
Proofview.Goal.enter begin fun gl ->
let sigma = Tacmach.project gl in
let env = Proofview.Goal.env gl in
let rl = make_args_list sigma rl t in
let e = find_ring_structure env sigma rl in
let sigma, l = make_term_list env sigma (EConstr.of_constr e.ring_carrier) rl in
let rl = Value.of_constr l in
let sigma, l = make_hyp_list env sigma lH in
let lH = Value.of_constr l in
let ring = ltac_ring_structure e in
Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Value.apply f (ring@[lH;rl]))
end
(***********************************************************************)
let new_field_path =
DirPath.make (List.map Id.of_string ["Field_tac";plugin_dir;"Coq"])
let field_ltac s =
lazy(KerName.make (ModPath.MPfile new_field_path) (Label.make s))
let _ = add_map "field"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
my_reference "IDphi", (function _->Eval);
my_reference "gen_phiZ", (function _->Eval);
(* display_linear: evaluate polynomials and coef operations, protect
field operations and make recursive call on the var map *)
my_reference "display_linear",
(function -1|9|10|11|13|15|16->Eval|12|14->Rec|_->Prot);
my_reference "display_pow_linear",
(function -1|9|10|11|14|16|18|19->Eval|12|17->Rec|_->Prot);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|12|14->Eval|11|13->Rec|_->Prot);
pol_cst "Pphi_pow",
(function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot);
(* PEeval: evaluate polynomial, protect ring
operations and make recursive call on the var map *)
pol_cst "PEeval", (function -1|10|13->Eval|8|12->Rec|_->Prot);
(* FEeval: evaluate polynomial, protect field
operations and make recursive call on the var map *)
my_reference "FEeval", (function -1|12|15->Eval|10|14->Rec|_->Prot)]);;
let _ = add_map "field_cond"
(map_without_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
my_reference "IDphi", (function _->Eval);
my_reference "gen_phiZ", (function _->Eval);
(* PCond: evaluate denum list, protect ring
operations and make recursive call on the var map *)
my_reference "PCond", (function -1|11|14->Eval|9|13->Rec|_->Prot)]);;
let _ = Redexpr.declare_reduction "simpl_field_expr"
(protect_red "field")
let afield_theory = my_reference "almost_field_theory"
let field_theory = my_reference "field_theory"
let sfield_theory = my_reference "semi_field_theory"
let af_ar = my_reference"AF_AR"
let f_r = my_reference"F_R"
let sf_sr = my_reference"SF_SR"
let dest_field env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match EConstr.kind sigma th_typ with
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
when isRefX env sigma (Lazy.force afield_theory) f ->
let sigma, rth = plapp sigma af_ar
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
when isRefX env sigma (Lazy.force field_theory) f ->
let sigma, rth =
plapp sigma f_r
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;div;inv;req|])
when isRefX env sigma (Lazy.force sfield_theory) f ->
let sigma, rth = plapp sigma sf_sr
[|r;zero;one;add;mul;div;inv;req;th_spec|] in
(Some true,r,zero,one,add,mul,None,None,div,inv,req,rth)
| _ -> error "bad field structure"
let field_from_carrier = Summary.ref Cmap.empty ~name:"field-tac-carrier-table"
let print_fields () =
Feedback.msg_notice (strbrk "The following field structures have been declared:");
Cmap.iter (fun _carrier fi ->
let env = Global.env () in
let sigma = Evd.from_env env in
Feedback.msg_notice
(hov 2
(Id.print fi.field_name ++ spc() ++
str"with carrier "++ pr_constr_env env sigma fi.field_carrier++spc()++
str"and equivalence relation "++ pr_constr_env env sigma fi.field_req))
) !field_from_carrier
let field_for_carrier r = Cmap.find r !field_from_carrier
let find_field_structure env sigma l =
check_required_library (cdir@["Field_tac"]);
match l with
| t::cl' ->
let ty = Retyping.get_type_of env sigma t in
let check c =
let ty' = Retyping.get_type_of env sigma c in
if not (Reductionops.is_conv env sigma ty ty') then
CErrors.user_err
(str"Arguments of field_simplify do not have all the same type.")
in
List.iter check cl';
(try field_for_carrier (EConstr.to_constr sigma ty)
with Not_found ->
CErrors.user_err
(str"Cannot find a declared field structure over"++
spc()++str"\""++pr_econstr_env env sigma ty++str"\"."))
| [] -> assert false
let add_field_entry e =
field_from_carrier := Cmap.add e.field_carrier e !field_from_carrier
let subst_th (subst,th) =
let c' = subst_mps subst th.field_carrier in
let eq' = subst_mps subst th.field_req in
let thm1' = subst_mps subst th.field_ok in
let thm2' = subst_mps subst th.field_simpl_eq_ok in
let thm3' = subst_mps subst th.field_simpl_ok in
let thm4' = subst_mps subst th.field_simpl_eq_in_ok in
let thm5' = subst_mps subst th.field_cond in
let tac'= Tacsubst.subst_tactic subst th.field_cst_tac in
let pow_tac' = Tacsubst.subst_tactic subst th.field_pow_tac in
let pretac'= Tacsubst.subst_tactic subst th.field_pre_tac in
let posttac'= Tacsubst.subst_tactic subst th.field_post_tac in
if c' == th.field_carrier &&
eq' == th.field_req &&
thm1' == th.field_ok &&
thm2' == th.field_simpl_eq_ok &&
thm3' == th.field_simpl_ok &&
thm4' == th.field_simpl_eq_in_ok &&
thm5' == th.field_cond &&
tac' == th.field_cst_tac &&
pow_tac' == th.field_pow_tac &&
pretac' == th.field_pre_tac &&
posttac' == th.field_post_tac then th
else
{ field_name = th.field_name;
field_carrier = c';
field_req = eq';
field_cst_tac = tac';
field_pow_tac = pow_tac';
field_ok = thm1';
field_simpl_eq_ok = thm2';
field_simpl_ok = thm3';
field_simpl_eq_in_ok = thm4';
field_cond = thm5';
field_pre_tac = pretac';
field_post_tac = posttac' }
let ftheory_to_obj : field_info -> obj =
declare_object @@ global_object_nodischarge "tactic-new-field-theory"
~cache:add_field_entry
~subst:(Some subst_th)
let field_equality env sigma r inv req =
match EConstr.kind sigma req with
| App (f, [| _ |]) when eq_constr_nounivs sigma f (Lazy.force coq_eq) ->
let c = UnivGen.constr_of_monomorphic_global (Global.env ()) Coqlib.(lib_ref "core.eq.congr") in
let c = EConstr.of_constr c in
mkApp(c,[|r;r;inv|])
| _ ->
let _setoid = setoid_of_relation env sigma r req in
let signature = [Some (r,Some req)],Some(r,Some req) in
let inv_m, inv_m_lem =
try Rewrite.Internal.default_morphism env sigma signature inv
with Not_found ->
error "field inverse should be declared as a morphism" in
inv_m_lem
let add_field_theory0 env sigma name fth eqth morphth cst_tac inj (pre,post) power sign odiv =
let open Constr in
check_required_library (cdir@["Field_tac"]);
let (sigma,fth) = ic env sigma fth in
let (kind,r,zero,one,add,mul,sub,opp,div,inv,req,rth) =
dest_field env sigma fth in
let (sth,ext) = build_setoid_params env sigma r add mul opp req eqth in
let eqth = Some(sth,ext) in
let _ = add_theory0 env sigma name rth eqth morphth cst_tac (None,None) power sign odiv in
let sigma, (pow_tac, pspec) = interp_power env sigma power in
let sigma, sspec = interp_sign env sigma sign in
let sigma, dspec = interp_div env sigma odiv in
let inv_m = field_equality env sigma r inv req in
let rk = reflect_coeff morphth in
let params,ctx =
exec_tactic env sigma 9 (field_ltac"field_lemmas")
[sth;ext;inv_m;fth;pspec;sspec;dspec;rk] in
let lemma1 = params.(3) in
let lemma2 = params.(4) in
let lemma3 = params.(5) in
let lemma4 = params.(6) in
let cond_lemma =
match inj with
| Some thm -> mkApp(params.(8),[|EConstr.to_constr sigma thm|])
| None -> params.(7) in
let lemma1 = decl_constant name "_field_lemma1"
ctx lemma1 in
let lemma2 = decl_constant name "_field_lemma2"
ctx lemma2 in
let lemma3 = decl_constant name "_field_lemma3"
ctx lemma3 in
let lemma4 = decl_constant name "_field_lemma4"
ctx lemma4 in
let cond_lemma = decl_constant name "_lemma5"
ctx cond_lemma in
let cst_tac =
interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
let pretac =
match pre with
Some t -> Tacintern.glob_tactic t
| _ -> CAst.make (TacId []) in
let posttac =
match post with
Some t -> Tacintern.glob_tactic t
| _ -> CAst.make (TacId []) in
let r = EConstr.to_constr sigma r in
let req = EConstr.to_constr sigma req in
let _ =
Lib.add_leaf
(ftheory_to_obj
{ field_name = name;
field_carrier = r;
field_req = req;
field_cst_tac = cst_tac;
field_pow_tac = pow_tac;
field_ok = lemma1;
field_simpl_eq_ok = lemma2;
field_simpl_ok = lemma3;
field_simpl_eq_in_ok = lemma4;
field_cond = cond_lemma;
field_pre_tac = pretac;
field_post_tac = posttac }) in ()
let process_field_mods env sigma l =
let kind = ref None in
let set = ref None in
let cst_tac = ref None in
let pre = ref None in
let post = ref None in
let inj = ref None in
let sign = ref None in
let power = ref None in
let div = ref None in
List.iter(function
Ring_mod(Ring_kind k) -> set_once "field kind" kind (ic_coeff_spec env sigma k)
| Ring_mod(Const_tac t) ->
set_once "tactic recognizing constants" cst_tac t
| Ring_mod(Pre_tac t) -> set_once "preprocess tactic" pre t
| Ring_mod(Post_tac t) -> set_once "postprocess tactic" post t
| Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic_unsafe env sigma sth,ic_unsafe env sigma ext)
| Ring_mod(Pow_spec(t,spec)) -> set_once "power" power (t,spec)
| Ring_mod(Sign_spec t) -> set_once "sign" sign t
| Ring_mod(Div_spec t) -> set_once "div" div t
| Inject i -> set_once "infinite property" inj (ic_unsafe env sigma i)) l;
let k = match !kind with Some k -> k | None -> Abstract in
(env, sigma, k, !set, !inj, !cst_tac, !pre, !post, !power, !sign, !div)
let add_field_theory id t mods =
let env = Global.env () in
let sigma = Evd.from_env env in
let (env,sigma,k,set,inj,cst_tac,pre,post,power,sign,div) = process_field_mods env sigma mods in
add_field_theory0 env sigma id t set k cst_tac inj (pre,post) power sign div
let ltac_field_structure e =
let req = carg e.field_req in
let cst_tac = tacarg e.field_cst_tac in
let pow_tac = tacarg e.field_pow_tac in
let field_ok = carg e.field_ok in
let field_simpl_ok = carg e.field_simpl_ok in
let field_simpl_eq_ok = carg e.field_simpl_eq_ok in
let field_simpl_eq_in_ok = carg e.field_simpl_eq_in_ok in
let cond_ok = carg e.field_cond in
let pretac = tacarg (CAst.make (TacFun ([Anonymous],e.field_pre_tac))) in
let posttac = tacarg (CAst.make (TacFun ([Anonymous],e.field_post_tac))) in
[req;cst_tac;pow_tac;field_ok;field_simpl_ok;field_simpl_eq_ok;
field_simpl_eq_in_ok;cond_ok;pretac;posttac]
let field_lookup (f : Value.t) lH rl t =
Proofview.Goal.enter begin fun gl ->
let sigma = Tacmach.project gl in
let env = Proofview.Goal.env gl in
let rl = make_args_list sigma rl t in
let e = find_field_structure env sigma rl in
let sigma, c = make_term_list env sigma (EConstr.of_constr e.field_carrier) rl in
let rl = Value.of_constr c in
let sigma, l = make_hyp_list env sigma lH in
let lH = Value.of_constr l in
let field = ltac_field_structure e in
Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Value.apply f (field@[lH;rl]))
end
|