1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Generic arguments used by the extension mechanisms of several Coq ASTs. *)
(** The route of a generic argument, from parsing to evaluation.
In the following diagram, "object" can be ltac_expr, constr, tactic_value, etc.
{% \begin{verbatim} %}
parsing in_raw out_raw
char stream ---> raw_object ---> raw_object generic_argument -------+
encapsulation decaps|
|
V
raw_object
|
globalization |
V
glob_object
|
encaps |
in_glob |
V
glob_object generic_argument
|
out in out_glob |
object <--- object generic_argument <--- object <--- glob_object <---+
| decaps encaps interp decaps
|
V
effective use
{% \end{verbatim} %}
To distinguish between the uninterpreted, globalized and
interpreted worlds, we annotate the type [generic_argument] by a
phantom argument.
*)
(** {5 Generic types} *)
module ArgT :
sig
type ('a, 'b, 'c) tag
val eq : ('a1, 'b1, 'c1) tag -> ('a2, 'b2, 'c2) tag -> ('a1 * 'b1 * 'c1, 'a2 * 'b2 * 'c2) CSig.eq option
val repr : ('a, 'b, 'c) tag -> string
type any = Any : ('a, 'b, 'c) tag -> any
val name : string -> any option
val dump : unit -> (int * string) list
end
(** Generic types. The first parameter is the OCaml lowest level, the second one
is the globalized level, and third one the internalized level. *)
type (_, _, _) genarg_type =
| ExtraArg : ('a, 'b, 'c) ArgT.tag -> ('a, 'b, 'c) genarg_type
| ListArg : ('a, 'b, 'c) genarg_type -> ('a list, 'b list, 'c list) genarg_type
| OptArg : ('a, 'b, 'c) genarg_type -> ('a option, 'b option, 'c option) genarg_type
| PairArg : ('a1, 'b1, 'c1) genarg_type * ('a2, 'b2, 'c2) genarg_type ->
('a1 * 'a2, 'b1 * 'b2, 'c1 * 'c2) genarg_type
type 'a uniform_genarg_type = ('a, 'a, 'a) genarg_type
(** Alias for concision when the three types agree. *)
type 'a vernac_genarg_type = ('a, Util.Empty.t, Util.Empty.t) genarg_type
(** Produced by VERNAC ARGUMENT EXTEND *)
val make0 : string -> ('raw, 'glob, 'top) genarg_type
(** Create a new generic type of argument: force to associate
unique ML types at each of the three levels. *)
val create_arg : string -> ('raw, 'glob, 'top) genarg_type
(** Alias for [make0]. *)
(** {5 Specialized types} *)
(** All of [rlevel], [glevel] and [tlevel] must be non convertible
to ensure the injectivity of the GADT type inference. *)
type rlevel = [ `rlevel ]
type glevel = [ `glevel ]
type tlevel = [ `tlevel ]
(** Generic types at a fixed level. The first parameter embeds the OCaml type
and the second one the level. *)
type (_, _) abstract_argument_type =
| Rawwit : ('a, 'b, 'c) genarg_type -> ('a, rlevel) abstract_argument_type
| Glbwit : ('a, 'b, 'c) genarg_type -> ('b, glevel) abstract_argument_type
| Topwit : ('a, 'b, 'c) genarg_type -> ('c, tlevel) abstract_argument_type
type 'a raw_abstract_argument_type = ('a, rlevel) abstract_argument_type
(** Specialized type at raw level. *)
type 'a glob_abstract_argument_type = ('a, glevel) abstract_argument_type
(** Specialized type at globalized level. *)
type 'a typed_abstract_argument_type = ('a, tlevel) abstract_argument_type
(** Specialized type at internalized level. *)
(** {6 Projections} *)
val rawwit : ('a, 'b, 'c) genarg_type -> ('a, rlevel) abstract_argument_type
(** Projection on the raw type constructor. *)
val glbwit : ('a, 'b, 'c) genarg_type -> ('b, glevel) abstract_argument_type
(** Projection on the globalized type constructor. *)
val topwit : ('a, 'b, 'c) genarg_type -> ('c, tlevel) abstract_argument_type
(** Projection on the internalized type constructor. *)
(** {5 Generic arguments} *)
type 'l generic_argument = GenArg : ('a, 'l) abstract_argument_type * 'a -> 'l generic_argument
(** A inhabitant of ['level generic_argument] is a inhabitant of some type at
level ['level], together with the representation of this type. *)
type raw_generic_argument = rlevel generic_argument
type glob_generic_argument = glevel generic_argument
type typed_generic_argument = tlevel generic_argument
(** {6 Constructors} *)
val in_gen : ('a, 'co) abstract_argument_type -> 'a -> 'co generic_argument
(** [in_gen t x] embeds an argument of type [t] into a generic argument. *)
val out_gen : ('a, 'co) abstract_argument_type -> 'co generic_argument -> 'a
(** [out_gen t x] recovers an argument of type [t] from a generic argument. It
fails if [x] has not the right dynamic type. *)
val has_type : 'co generic_argument -> ('a, 'co) abstract_argument_type -> bool
(** [has_type v t] tells whether [v] has type [t]. If true, it ensures that
[out_gen t v] will not raise a dynamic type exception. *)
(** {6 Type reification} *)
type argument_type = ArgumentType : ('a, 'b, 'c) genarg_type -> argument_type
(** {6 Equalities} *)
val argument_type_eq : argument_type -> argument_type -> bool
val genarg_type_eq :
('a1, 'b1, 'c1) genarg_type ->
('a2, 'b2, 'c2) genarg_type ->
('a1 * 'b1 * 'c1, 'a2 * 'b2 * 'c2) CSig.eq option
val abstract_argument_type_eq :
('a, 'l) abstract_argument_type -> ('b, 'l) abstract_argument_type ->
('a, 'b) CSig.eq option
val pr_argument_type : argument_type -> Pp.t
(** Print a human-readable representation for a given type. *)
val genarg_tag : 'a generic_argument -> argument_type
val unquote : ('a, 'co) abstract_argument_type -> argument_type
(** {6 Registering genarg-manipulating functions}
This is boilerplate code used here and there in the code of Coq. *)
val get_arg_tag : ('a, 'b, 'c) genarg_type -> ('a, 'b, 'c) ArgT.tag
(** Works only on base objects (ExtraArg), otherwise fails badly. *)
module type GenObj =
sig
type ('raw, 'glb, 'top) obj
(** An object manipulating generic arguments. *)
val name : string
(** A name for such kind of manipulation, e.g. [interp]. *)
val default : ('raw, 'glb, 'top) genarg_type -> ('raw, 'glb, 'top) obj option
(** A generic object when there is no registered object for this type. *)
end
module Register (M : GenObj) :
sig
(** Warning: although the following APIs use [genarg_type] the
values must always be [ExtraArg some_tag]. *)
val register0 : ('raw, 'glb, 'top) genarg_type ->
('raw, 'glb, 'top) M.obj -> unit
(** Register a ground type manipulation function. *)
val obj : ('raw, 'glb, 'top) genarg_type -> ('raw, 'glb, 'top) M.obj
(** Recover a manipulation function at a given type. *)
val mem : _ genarg_type -> bool
(** Is this type registered? *)
val fold_keys : (ArgT.any -> 'acc -> 'acc) -> 'acc -> 'acc
(** Fold over the registered keys. *)
end
(** {5 Substitution functions} *)
type 'glb subst_fun = Mod_subst.substitution -> 'glb -> 'glb
(** The type of functions used for substituting generic arguments. *)
val substitute : ('raw, 'glb, 'top) genarg_type -> 'glb subst_fun
val generic_substitute : glob_generic_argument subst_fun
val register_subst0 : ('raw, 'glb, 'top) genarg_type ->
'glb subst_fun -> unit
(** {5 Compatibility layer}
The functions below are aliases for generic_type constructors.
*)
val wit_list : ('a, 'b, 'c) genarg_type -> ('a list, 'b list, 'c list) genarg_type
val wit_opt : ('a, 'b, 'c) genarg_type -> ('a option, 'b option, 'c option) genarg_type
val wit_pair : ('a1, 'b1, 'c1) genarg_type -> ('a2, 'b2, 'c2) genarg_type ->
('a1 * 'a2, 'b1 * 'b2, 'c1 * 'c2) genarg_type
|