1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* module CVars = Vars *)
open Pp
open Util
open Names
open Constr
open Context
open Termops
open Environ
open EConstr
open Vars
open Find_subterm
open Namegen
open Locus
open Proofview.Notations
open Context.Named.Declaration
module NamedDecl = Context.Named.Declaration
(*********************************************)
(* Errors *)
(*********************************************)
exception AlreadyUsed of Id.t
let error ?loc e =
Loc.raise ?loc e
exception Unhandled
let wrap_unhandled f e =
try Some (f e)
with Unhandled -> None
let tactic_interp_error_handler = function
| AlreadyUsed id ->
Id.print id ++ str " is already used."
| _ -> raise Unhandled
let _ = CErrors.register_handler (wrap_unhandled tactic_interp_error_handler)
let fresh_id_in_env avoid id env =
let avoid' = ids_of_named_context_val (named_context_val env) in
let avoid = if Id.Set.is_empty avoid then avoid' else Id.Set.union avoid' avoid in
next_ident_away_in_goal (Global.env ()) id avoid
(*********************************)
(* Basic generalization tactics *)
(*********************************)
(* Given a type [T] convertible to [forall x1..xn:A1..An(x1..xn-1), G(x1..xn)]
and [a1..an:A1..An(a1..an-1)] such that the goal is [G(a1..an)],
this generalizes [hyps |- goal] into [hyps |- T] *)
(* Given a context [hyps] with domain [x1..xn], possibly with let-ins,
and well-typed in the current goal, [bring_hyps hyps] generalizes
[ctxt |- G(x1..xn] into [ctxt |- forall hyps, G(x1..xn)] *)
let bring_hyps hyps =
if List.is_empty hyps then Tacticals.tclIDTAC
else
let hyps = List.rev hyps in
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let concl = Tacmach.pf_concl gl in
let newcl = it_mkNamedProd_or_LetIn sigma concl hyps in
let args = Context.Named.instance mkVar hyps in
Refine.refine ~typecheck:false begin fun sigma ->
let (sigma, ev) =
Evarutil.new_evar env sigma ~principal:true newcl in
(sigma, mkApp (ev, args))
end
end
let revert hyps =
Proofview.Goal.enter begin fun gl ->
let ctx = List.map (fun id -> Tacmach.pf_get_hyp id gl) hyps in
(bring_hyps ctx) <*> (Tactics.clear hyps)
end
(***************************)
(* Generalization tactics *)
(***************************)
(* Compute a name for a generalization *)
let generalized_name env sigma c t ids cl = function
| Name id as na ->
if Id.List.mem id ids then
error (AlreadyUsed id);
na
| Anonymous ->
match EConstr.kind sigma c with
| Var id ->
(* Keep the name even if not occurring: may be used by intros later *)
Name id
| _ ->
if noccurn sigma 1 cl then Anonymous else
(* On ne s'etait pas casse la tete : on avait pris pour nom de
variable la premiere lettre du type, meme si "c" avait ete une
constante dont on aurait pu prendre directement le nom *)
named_hd env sigma t Anonymous
(* Abstract over [c] in [forall x1:A1(c)..xi:Ai(c).T(c)] producing
[forall x, x1:A1(x1), .., xi:Ai(x). T(x)] with all [c] abtracted in [Ai]
but only those at [occs] in [T] *)
let generalize_goal_gen env sigma ids i ((occs,c,b),na) t cl =
let open Context.Rel.Declaration in
let decls,cl = decompose_prod_n_decls sigma i cl in
let dummy_prod = it_mkProd_or_LetIn mkProp decls in
let newdecls,_ =
let arity = Array.length (snd (EConstr.decompose_app sigma c)) in
let cache = ref Int.Map.empty in
let eq sigma k t =
let c =
try Int.Map.find k !cache
with Not_found ->
let c = EConstr.Vars.lift k c in
let () = cache := Int.Map.add k c !cache in
c
in
(* We use a nounivs equality because generalize morally takes a pattern as
argument, so we have to ignore freshly generated sorts. *)
EConstr.eq_constr_nounivs sigma c t
in
decompose_prod_n_decls sigma i (replace_term_gen sigma eq arity (mkRel 1) dummy_prod)
in
let cl',sigma' = subst_closed_term_occ env sigma (AtOccs occs) c (it_mkProd_or_LetIn cl newdecls) in
let na = generalized_name env sigma c t ids cl' na in
let r = Retyping.relevance_of_type env sigma t in
let decl = match b with
| None -> LocalAssum (make_annot na r,t)
| Some b -> LocalDef (make_annot na r,b,t)
in
mkProd_or_LetIn decl cl', sigma'
let generalize_goal gl i ((occs,c,b),na as o) (cl,sigma) =
let open Tacmach in
let env = pf_env gl in
let ids = pf_ids_of_hyps gl in
let sigma, t = Typing.type_of env sigma c in
generalize_goal_gen env sigma ids i o t cl
let generalize_dep ?(with_let=false) c =
let open Tacmach in
let open Tacticals in
Proofview.Goal.enter begin fun gl ->
let env = pf_env gl in
let sign = named_context_val env in
let sigma = project gl in
let init_ids = ids_of_named_context (Global.named_context()) in
let seek (d:named_declaration) (toquant:named_context) =
if List.exists (fun d' -> occur_var_in_decl env sigma (NamedDecl.get_id d') d) toquant
|| dependent_in_decl sigma c d then
d::toquant
else
toquant in
let to_quantify = Context.Named.fold_outside seek (named_context_of_val sign) ~init:[] in
let qhyps = List.map NamedDecl.get_id to_quantify in
let tothin = List.filter (fun id -> not (Id.List.mem id init_ids)) qhyps in
let tothin' =
match EConstr.kind sigma c with
| Var id when mem_named_context_val id sign && not (Id.List.mem id init_ids)
-> tothin@[id]
| _ -> tothin
in
let cl' = it_mkNamedProd_or_LetIn sigma (pf_concl gl) to_quantify in
let is_var, body = match EConstr.kind sigma c with
| Var id ->
let body = NamedDecl.get_value (pf_get_hyp id gl) in
let is_var = Option.is_empty body && not (List.mem id init_ids) in
if with_let then is_var, body else is_var, None
| _ -> false, None
in
let cl'',evd = generalize_goal gl 0 ((AllOccurrences,c,body),Anonymous)
(cl',project gl) in
(* Check that the generalization is indeed well-typed *)
let evd =
(* No need to retype for variables, term is statically well-typed *)
if is_var then evd
else fst (Typing.type_of env evd cl'')
in
let args = Array.to_list (Context.Named.instance mkVar to_quantify) in
tclTHENLIST
[ Proofview.Unsafe.tclEVARS evd;
Tactics.apply_type ~typecheck:false cl'' (if Option.is_empty body then c::args else args);
Tactics.clear tothin']
end
(** *)
let generalize_gen_let lconstr = Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let newcl, evd =
List.fold_right_i (generalize_goal gl) 0 lconstr
(Tacmach.pf_concl gl,Tacmach.project gl)
in
let (evd, _) = Typing.type_of env evd newcl in
let map ((_, c, b),_) = if Option.is_empty b then Some c else None in
Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd)
(Tactics.apply_type ~typecheck:false newcl (List.map_filter map lconstr))
end
let new_generalize_gen_let lconstr =
Proofview.Goal.enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let concl = Proofview.Goal.concl gl in
let env = Proofview.Goal.env gl in
let ids = Tacmach.pf_ids_of_hyps gl in
let newcl, sigma, args =
List.fold_right_i
(fun i ((_,c,b),_ as o) (cl, sigma, args) ->
let sigma, t = Typing.type_of env sigma c in
let args = if Option.is_empty b then c :: args else args in
let cl, sigma = generalize_goal_gen env sigma ids i o t cl in
(cl, sigma, args))
0 lconstr (concl, sigma, [])
in
Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma)
(Refine.refine ~typecheck:false begin fun sigma ->
let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in
(sigma, applist (ev, args))
end)
end
let generalize_gen lconstr =
generalize_gen_let (List.map (fun ((occs,c),na) ->
(occs,c,None),na) lconstr)
let new_generalize_gen lconstr =
new_generalize_gen_let (List.map (fun ((occs,c),na) ->
(occs,c,None),na) lconstr)
let generalize l =
new_generalize_gen_let (List.map (fun c -> ((AllOccurrences,c,None),Anonymous)) l)
(* Faudra-t-il une version avec plusieurs args de generalize_dep ?
Cela peut-être troublant de faire "Generalize Dependent H n" dans
"n:nat; H:n=n |- P(n)" et d'échouer parce que H a disparu après la
généralisation dépendante par n.
let quantify lconstr =
List.fold_right
(fun com tac -> tclTHEN tac (tactic_com generalize_dep c))
lconstr
tclIDTAC
*)
let coq_eq env sigma = Evd.fresh_global env sigma Coqlib.(lib_ref "core.eq.type")
let coq_eq_refl env sigma = Evd.fresh_global env sigma Coqlib.(lib_ref "core.eq.refl")
let coq_heq_ref = lazy (Coqlib.lib_ref "core.JMeq.type")
let coq_heq env sigma = Evd.fresh_global env sigma (Lazy.force coq_heq_ref)
let coq_heq_refl env sigma = Evd.fresh_global env sigma (Coqlib.lib_ref "core.JMeq.refl")
(* let coq_heq_refl = lazy (glob (lib_ref "core.JMeq.refl")) *)
let mkEq env sigma t x y =
let sigma, eq = coq_eq env sigma in
sigma, mkApp (eq, [| t; x; y |])
let mkRefl env sigma t x =
let sigma, refl = coq_eq_refl env sigma in
sigma, mkApp (refl, [| t; x |])
let mkHEq env sigma t x u y =
let sigma, c = coq_heq env sigma in
sigma, mkApp (c,[| t; x; u; y |])
let mkHRefl env sigma t x =
let sigma, c = coq_heq_refl env sigma in
sigma, mkApp (c, [| t; x |])
let lift_togethern n l =
let l', _ =
List.fold_right
(fun x (acc, n) ->
(lift n x :: acc, succ n))
l ([], n)
in l'
let lift_list l = List.map (lift 1) l
let ids_of_constr env sigma ?(all=false) vars c =
let rec aux vars c =
match EConstr.kind sigma c with
| Var id -> Id.Set.add id vars
| App (f, args) ->
(match EConstr.kind sigma f with
| Construct ((ind,_),_)
| Ind (ind,_) ->
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Array.fold_left_from
(if all then 0 else mib.Declarations.mind_nparams)
aux vars args
| _ -> EConstr.fold sigma aux vars c)
| _ -> EConstr.fold sigma aux vars c
in aux vars c
let decompose_indapp env sigma f args =
match EConstr.kind sigma f with
| Construct ((ind,_),_)
| Ind (ind,_) ->
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let first = mib.Declarations.mind_nparams_rec in
let pars, args = Array.chop first args in
mkApp (f, pars), args
| _ -> f, args
let mk_term_eq homogeneous env sigma ty t ty' t' =
if homogeneous then
let sigma, eq = mkEq env sigma ty t t' in
let sigma, refl = mkRefl env sigma ty' t' in
sigma, (eq, refl)
else
let sigma, heq = mkHEq env sigma ty t ty' t' in
let sigma, hrefl = mkHRefl env sigma ty' t' in
sigma, (heq, hrefl)
let make_abstract_generalize env id typ concl dep ctx body c eqs args refls =
let open Context.Rel.Declaration in
Refine.refine ~typecheck:true begin fun sigma ->
let eqslen = List.length eqs in
(* Abstract by the "generalized" hypothesis equality proof if necessary. *)
let sigma, abshypeq, abshypt =
if dep then
let ty = lift 1 c in
let homogeneous = Reductionops.is_conv env sigma ty typ in
let sigma, (eq, refl) =
mk_term_eq homogeneous (push_rel_context ctx env) sigma ty (mkRel 1) typ (mkVar id) in
sigma, mkProd (make_annot Anonymous ERelevance.relevant, eq, lift 1 concl), [| refl |]
else sigma, concl, [||]
in
(* Abstract by equalities *)
let eqs = lift_togethern 1 eqs in (* lift together and past genarg *)
let abseqs = it_mkProd_or_LetIn (lift eqslen abshypeq)
(List.map (fun x -> LocalAssum (make_annot Anonymous ERelevance.relevant, x)) eqs)
in
let r = ERelevance.relevant in (* TODO relevance *)
let decl = match body with
| None -> LocalAssum (make_annot (Name id) r, c)
| Some body -> LocalDef (make_annot (Name id) r, body, c)
in
(* Abstract by the "generalized" hypothesis. *)
let genarg = mkProd_or_LetIn decl abseqs in
(* Abstract by the extension of the context *)
let genctyp = it_mkProd_or_LetIn genarg ctx in
(* The goal will become this product. *)
let (sigma, genc) = Evarutil.new_evar env sigma ~principal:true genctyp in
(* Apply the old arguments giving the proper instantiation of the hyp *)
let instc = mkApp (genc, Array.of_list args) in
(* Then apply to the original instantiated hyp. *)
let instc = Option.cata (fun _ -> instc) (mkApp (instc, [| mkVar id |])) body in
(* Apply the reflexivity proofs on the indices. *)
let appeqs = mkApp (instc, Array.of_list refls) in
(* Finally, apply the reflexivity proof for the original hyp, to get a term of type gl again. *)
(sigma, mkApp (appeqs, abshypt))
end
let hyps_of_vars env sigma sign nogen hyps =
if Id.Set.is_empty hyps then []
else
let (_,lh) =
Context.Named.fold_inside
(fun (hs,hl) d ->
let x = NamedDecl.get_id d in
if Id.Set.mem x nogen then (hs,hl)
else if Id.Set.mem x hs then (hs,x::hl)
else
let xvars = global_vars_set_of_decl env sigma d in
if not (Id.Set.is_empty (Id.Set.diff xvars hs)) then
(Id.Set.add x hs, x :: hl)
else (hs, hl))
~init:(hyps,[])
sign
in lh
exception Seen
let linear env sigma vars args =
let seen = ref vars in
try
Array.iter (fun i ->
let rels = ids_of_constr env sigma ~all:true Id.Set.empty i in
let seen' =
Id.Set.fold (fun id acc ->
if Id.Set.mem id acc then raise Seen
else Id.Set.add id acc)
rels !seen
in seen := seen')
args;
true
with Seen -> false
let is_defined_variable env id =
env |> lookup_named id |> is_local_def
let abstract_args gl generalize_vars dep id defined f args =
let open Context.Rel.Declaration in
let sigma = Tacmach.project gl in
let env = Tacmach.pf_env gl in
let concl = Tacmach.pf_concl gl in
let hyps = Proofview.Goal.hyps gl in
let dep = dep || local_occur_var sigma id concl in
let avoid = ref Id.Set.empty in
let get_id name =
let id = fresh_id_in_env !avoid (match name with Name n -> n | Anonymous -> Id.of_string "gen_x") env in
avoid := Id.Set.add id !avoid; id
in
(* Build application generalized w.r.t. the argument plus the necessary eqs.
From env |- c : forall G, T and args : G we build
(T[G'], G' : ctx, env ; G' |- args' : G, eqs := G'_i = G_i, refls : G' = G, vars to generalize)
eqs are not lifted w.r.t. each other yet. (* will be needed when going to dependent indexes *)
*)
let aux (sigma, prod, ctx, ctxenv, c, args, eqs, refls, nongenvars, vars) arg =
let name, ty_relevance, ty, arity =
let rel, c = Reductionops.whd_decompose_prod_n env sigma 1 prod in
let ({binder_name=na;binder_relevance=r},t) = List.hd rel in
na, r, t, c
in
let argty = Retyping.get_type_of env sigma arg in
let sigma, ty = Evarsolve.refresh_universes (Some true) env sigma ty in
let lenctx = List.length ctx in
let liftargty = lift lenctx argty in
let leq = constr_cmp ctxenv sigma Conversion.CUMUL liftargty ty in
match EConstr.kind sigma arg with
| Var id when not (is_defined_variable env id) && leq && not (Id.Set.mem id nongenvars) ->
(sigma, subst1 arg arity, ctx, ctxenv, mkApp (c, [|arg|]), args, eqs, refls,
Id.Set.add id nongenvars, Id.Set.remove id vars)
| _ ->
let name = get_id name in
let decl = LocalAssum (make_annot (Name name) ty_relevance, ty) in
let ctx = decl :: ctx in
let c' = mkApp (lift 1 c, [|mkRel 1|]) in
let args = arg :: args in
let liftarg = lift (List.length ctx) arg in
let sigma, eq, refl =
if leq then
let sigma, eq = mkEq env sigma (lift 1 ty) (mkRel 1) liftarg in
let sigma, refl = mkRefl env sigma (lift (-lenctx) ty) arg in
sigma, eq, refl
else
let sigma, eq = mkHEq env sigma (lift 1 ty) (mkRel 1) liftargty liftarg in
let sigma, refl = mkHRefl env sigma argty arg in
sigma, eq, refl
in
let eqs = eq :: lift_list eqs in
let refls = refl :: refls in
let argvars = ids_of_constr env sigma vars arg in
(sigma, arity, ctx, push_rel decl ctxenv, c', args, eqs, refls,
nongenvars, Id.Set.union argvars vars)
in
let f', args' = decompose_indapp env sigma f args in
let dogen, f', args' =
let parvars = ids_of_constr env sigma ~all:true Id.Set.empty f' in
if not (linear env sigma parvars args') then true, f, args
else
match Array.findi (fun i x -> not (isVar sigma x) || is_defined_variable env (destVar sigma x)) args' with
| None -> false, f', args'
| Some nonvar ->
let before, after = Array.chop nonvar args' in
true, mkApp (f', before), after
in
if dogen then
let tyf' = Retyping.get_type_of env sigma f' in
let sigma, arity, ctx, ctxenv, c', args, eqs, refls, nogen, vars =
Array.fold_left aux (sigma, tyf',[],env,f',[],[],[],Id.Set.empty,Id.Set.empty) args'
in
let args, refls = List.rev args, List.rev refls in
let vars =
if generalize_vars then
let nogen = Id.Set.add id nogen in
hyps_of_vars env sigma hyps nogen vars
else []
in
let body, c' =
if defined then Some c', Retyping.get_type_of ctxenv sigma c'
else None, c'
in
let typ = Tacmach.pf_get_hyp_typ id gl in
let tac = make_abstract_generalize env id typ concl dep ctx body c' eqs args refls in
let tac = Proofview.Unsafe.tclEVARS sigma <*> tac in
Some (tac, dep, succ (List.length ctx), vars)
else None
let abstract_generalize ?(generalize_vars=true) ?(force_dep=false) id =
let open Context.Named.Declaration in
Proofview.Goal.enter begin fun gl ->
Coqlib.(check_required_library jmeq_module_name);
let sigma = Tacmach.project gl in
let (f, args, def, id, oldid) =
let oldid = Tacmach.pf_get_new_id id gl in
match Tacmach.pf_get_hyp id gl with
| LocalAssum (_,t) -> let f, args = decompose_app sigma t in
(f, args, false, id, oldid)
| LocalDef (_,t,_) ->
let f, args = decompose_app sigma t in
(f, args, true, id, oldid)
in
if Array.is_empty args then Proofview.tclUNIT ()
else
let newc = abstract_args gl generalize_vars force_dep id def f args in
match newc with
| None -> Proofview.tclUNIT ()
| Some (tac, dep, n, vars) ->
let tac =
if dep then
Tacticals.tclTHENLIST [
tac;
Tactics.rename_hyp [(id, oldid)]; Tacticals.tclDO n Tactics.intro;
generalize_dep ~with_let:true (mkVar oldid)]
else Tacticals.tclTHENLIST [
tac;
Tactics.clear [id];
Tacticals.tclDO n Tactics.intro]
in
if List.is_empty vars then tac
else Tacticals.tclTHEN tac
(Tacticals.tclFIRST
[revert vars ;
Tacticals.tclMAP (fun id ->
Tacticals.tclTRY (generalize_dep ~with_let:true (mkVar id))) vars])
end
|