1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
|
Set Implicit Arguments.
Generalizable All Variables.
Polymorphic Variant Category (obj : Type) :=.
Polymorphic Variant Functor objC (C : Category objC) objD (D : Category objD) :=.
Polymorphic Definition ComposeFunctors objC C objD D objE E (G : @Functor objD D objE E) (F : @Functor objC C objD D) : Functor C E.
Admitted.
Polymorphic Definition ProductCategory objC (C : Category objC) objD (D : Category objD) : @Category (objC * objD)%type.
Admitted.
Polymorphic Definition Cat0 : Category Empty_set.
Admitted.
Set Printing Universes.
Lemma ProductLaw0 objC (C : Category objC) (F : Functor (ProductCategory C Cat0) Cat0) (G : Functor Cat0 (ProductCategory C Cat0)) x y :
ComposeFunctors F G = x /\
ComposeFunctors G F = y.
Proof.
split. (* Error: Refiner was given an argument "(objC * 0)%type" of type "Type" instead of "Set". *)
Abort.
|