1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
Require Import TestSuite.admit.
Module FirstComment.
Set Implicit Arguments.
Generalizable All Variables.
Set Asymmetric Patterns.
Set Universe Polymorphism.
Reserved Notation "x # y" (at level 40, left associativity).
Reserved Notation "x #m y" (at level 40, left associativity).
Delimit Scope object_scope with object.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Record Category (obj : Type) :=
{
Object :> _ := obj;
Morphism : obj -> obj -> Type;
Identity : forall x, Morphism x x;
Compose : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d'
}.
Bind Scope object_scope with Object.
Bind Scope morphism_scope with Morphism.
Arguments Object {obj%_type} C%_category / : rename.
Arguments Morphism {obj%_type} !C%_category s d : rename. (* , simpl nomatch. *)
Arguments Identity {obj%_type} [!C%_category] x%_object : rename.
Arguments Compose {obj%_type} [!C%_category s%_object d%_object d'%_object] m1%_morphism m2%_morphism : rename.
Bind Scope category_scope with Category.
Record Functor
`(C : @Category objC)
`(D : @Category objD)
:= {
ObjectOf :> objC -> objD;
MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d)
}.
Record NaturalTransformation
`(C : @Category objC)
`(D : @Category objD)
(F G : Functor C D)
:= {
ComponentsOf :> forall c, D.(Morphism) (F c) (G c)
}.
Definition ProductCategory
`(C : @Category objC)
`(D : @Category objD)
: @Category (objC * objD)%type.
refine (@Build_Category _
(fun s d => (C.(Morphism) (fst s) (fst d) * D.(Morphism) (snd s) (snd d))%type)
(fun o => (Identity (fst o), Identity (snd o)))
(fun s d d' m2 m1 => (Compose (fst m2) (fst m1), Compose (snd m2) (snd m1)))).
Defined.
Infix "*" := ProductCategory : category_scope.
Record IsomorphismOf `{C : @Category objC} {s d} (m : C.(Morphism) s d) :=
{
IsomorphismOf_Morphism :> C.(Morphism) s d := m;
Inverse : C.(Morphism) d s
}.
Record NaturalIsomorphism
`(C : @Category objC)
`(D : @Category objD)
(F G : Functor C D)
:= {
NaturalIsomorphism_Transformation :> NaturalTransformation F G;
NaturalIsomorphism_Isomorphism : forall x : objC, IsomorphismOf (NaturalIsomorphism_Transformation x)
}.
Section PreMonoidalCategory.
Context `(C : @Category objC).
Variable TensorProduct : Functor (C * C) C.
Let src {C : @Category objC} {s d} (_ : Morphism C s d) := s.
Let dst {C : @Category objC} {s d} (_ : Morphism C s d) := d.
Local Notation "A # B" := (TensorProduct (A, B)).
Local Notation "A #m B" := (TensorProduct.(MorphismOf) ((@src _ _ _ A, @src _ _ _ B)) ((@dst _ _ _ A, @dst _ _ _ B)) (A, B)%morphism).
Let TriMonoidalProductL_ObjectOf (abc : C * C * C) : C :=
(fst (fst abc) # snd (fst abc)) # snd abc.
Let TriMonoidalProductR_ObjectOf (abc : C * C * C) : C :=
fst (fst abc) # (snd (fst abc) # snd abc).
Let TriMonoidalProductL_MorphismOf (s d : C * C * C) (m : Morphism (C * C * C) s d) :
Morphism C (TriMonoidalProductL_ObjectOf s) (TriMonoidalProductL_ObjectOf d).
Admitted.
Let TriMonoidalProductR_MorphismOf (s d : C * C * C) (m : Morphism (C * C * C) s d) :
Morphism C (TriMonoidalProductR_ObjectOf s) (TriMonoidalProductR_ObjectOf d).
Admitted.
Definition TriMonoidalProductL : Functor (C * C * C) C.
refine (Build_Functor (C * C * C) C
TriMonoidalProductL_ObjectOf
TriMonoidalProductL_MorphismOf).
Defined.
Definition TriMonoidalProductR : Functor (C * C * C) C.
refine (Build_Functor (C * C * C) C
TriMonoidalProductR_ObjectOf
TriMonoidalProductR_MorphismOf).
Defined.
Variable Associator : NaturalIsomorphism TriMonoidalProductL TriMonoidalProductR.
Section AssociatorCoherenceCondition.
Variables a b c d : C.
(* going from top-left *)
Let AssociatorCoherenceConditionT0 : Morphism C (((a # b) # c) # d) ((a # (b # c)) # d)
:= Associator (a, b, c) #m Identity (C := C) d.
Let AssociatorCoherenceConditionT1 : Morphism C ((a # (b # c)) # d) (a # ((b # c) # d))
:= Associator (a, b # c, d).
Let AssociatorCoherenceConditionT2 : Morphism C (a # ((b # c) # d)) (a # (b # (c # d)))
:= Identity (C := C) a #m Associator (b, c, d).
Let AssociatorCoherenceConditionB0 : Morphism C (((a # b) # c) # d) ((a # b) # (c # d))
:= Associator (a # b, c, d).
Let AssociatorCoherenceConditionB1 : Morphism C ((a # b) # (c # d)) (a # (b # (c # d)))
:= Associator (a, b, c # d).
Definition AssociatorCoherenceCondition' :=
Compose AssociatorCoherenceConditionT2 (Compose AssociatorCoherenceConditionT1 AssociatorCoherenceConditionT0)
= Compose AssociatorCoherenceConditionB1 AssociatorCoherenceConditionB0.
End AssociatorCoherenceCondition.
Definition AssociatorCoherenceCondition := Eval unfold AssociatorCoherenceCondition' in
forall a b c d : C, AssociatorCoherenceCondition' a b c d.
End PreMonoidalCategory.
Section MonoidalCategory.
Variable objC : Type.
Let AssociatorCoherenceCondition' := Eval unfold AssociatorCoherenceCondition in @AssociatorCoherenceCondition.
Record MonoidalCategory :=
{
MonoidalUnderlyingCategory :> @Category objC;
TensorProduct : Functor (MonoidalUnderlyingCategory * MonoidalUnderlyingCategory) MonoidalUnderlyingCategory;
IdentityObject : objC;
Associator : NaturalIsomorphism (TriMonoidalProductL TensorProduct) (TriMonoidalProductR TensorProduct);
AssociatorCoherent : AssociatorCoherenceCondition' Associator
}.
End MonoidalCategory.
Section EnrichedCategory.
Context `(M : @MonoidalCategory objM).
Let x : M := IdentityObject M.
(* Anomaly: apply_coercion_args: mismatch between arguments and coercion. Please report. *)
End EnrichedCategory.
End FirstComment.
Module SecondComment.
Set Implicit Arguments.
Set Universe Polymorphism.
Generalizable All Variables.
Record prod (A B : Type) := pair { fst : A; snd : B }.
Arguments fst {A B} _.
Arguments snd {A B} _.
Infix "*" := prod : type_scope.
Notation " ( x , y ) " := (@pair _ _ x y).
Record Category (obj : Type) :=
Build_Category {
Object :> _ := obj;
Morphism : obj -> obj -> Type;
Identity : forall x, Morphism x x;
Compose : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d'
}.
Arguments Identity {obj%_type} [!C] x : rename.
Arguments Compose {obj%_type} [!C s d d'] m1 m2 : rename.
Record > Category' :=
{
LSObject : Type;
LSUnderlyingCategory :> @Category LSObject
}.
Section Functor.
Context `(C : @Category objC).
Context `(D : @Category objD).
Record Functor :=
{
ObjectOf :> objC -> objD;
MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d)
}.
End Functor.
Arguments MorphismOf {objC%_type} [C] {objD%_type} [D] F [s d] m : rename, simpl nomatch.
Section FunctorComposition.
Context `(C : @Category objC).
Context `(D : @Category objD).
Context `(E : @Category objE).
Definition ComposeFunctors (G : Functor D E) (F : Functor C D) : Functor C E.
Admitted.
End FunctorComposition.
Section IdentityFunctor.
Context `(C : @Category objC).
Definition IdentityFunctor : Functor C C.
refine {| ObjectOf := (fun x => x);
MorphismOf := (fun _ _ x => x)
|}.
Defined.
End IdentityFunctor.
Section ProductCategory.
Context `(C : @Category objC).
Context `(D : @Category objD).
Definition ProductCategory : @Category (objC * objD)%type.
refine (@Build_Category _
(fun s d => (C.(Morphism) (fst s) (fst d) * D.(Morphism) (snd s) (snd d))%type)
(fun o => (Identity (fst o), Identity (snd o)))
(fun s d d' m2 m1 => (Compose (fst m2) (fst m1), Compose (snd m2) (snd m1)))).
Defined.
End ProductCategory.
Definition OppositeCategory `(C : @Category objC) : Category objC :=
@Build_Category objC
(fun s d => Morphism C d s)
(Identity (C := C))
(fun _ _ _ m1 m2 => Compose m2 m1).
Parameter FunctorCategory : forall `(C : @Category objC) `(D : @Category objD), @Category (Functor C D).
Parameter TerminalCategory : Category unit.
Section ComputableCategory.
Variable I : Type.
Variable Index2Object : I -> Type.
Variable Index2Cat : forall i : I, @Category (@Index2Object i).
Local Coercion Index2Cat : I >-> Category.
Definition ComputableCategory : @Category I.
refine (@Build_Category _
(fun C D : I => Functor C D)
(fun o : I => IdentityFunctor o)
(fun C D E : I => ComposeFunctors (C := C) (D := D) (E := E))).
Defined.
End ComputableCategory.
Section SmallCat.
Definition LocallySmallCat := ComputableCategory _ LSUnderlyingCategory.
End SmallCat.
Section CommaCategory.
Context `(A : @Category objA).
Context `(B : @Category objB).
Context `(C : @Category objC).
Variable S : Functor A C.
Variable T : Functor B C.
Record CommaCategory_Object := { CommaCategory_Object_Member :> { ab : objA * objB & C.(Morphism) (S (fst ab)) (T (snd ab)) } }.
Let SortPolymorphic_Helper (A T : Type) (Build_T : A -> T) := A.
Definition CommaCategory_ObjectT := Eval hnf in SortPolymorphic_Helper Build_CommaCategory_Object.
Definition Build_CommaCategory_Object' (mem : CommaCategory_ObjectT) := Build_CommaCategory_Object mem.
Global Coercion Build_CommaCategory_Object' : CommaCategory_ObjectT >-> CommaCategory_Object.
Definition CommaCategory : @Category CommaCategory_Object.
Admitted.
End CommaCategory.
Definition SliceCategory_Functor `(C : @Category objC) (a : C) : Functor TerminalCategory C
:= {| ObjectOf := (fun _ => a);
MorphismOf := (fun _ _ _ => Identity a)
|}.
Definition SliceCategoryOver
: forall (objC : Type) (C : Category objC) (a : C),
Category
(CommaCategory_Object (IdentityFunctor C)
(SliceCategory_Functor C a)).
admit.
Defined.
Section CommaCategoryProjectionFunctor.
Context `(A : Category objA).
Context `(B : Category objB).
Context `(C : Category objC).
Variable S : (OppositeCategory (FunctorCategory A C)).
Variable T : (FunctorCategory B C).
Definition CommaCategoryProjection : Functor (CommaCategory S T) (ProductCategory A B).
Admitted.
Definition CommaCategoryProjectionFunctor_ObjectOf
: @SliceCategoryOver _ LocallySmallCat (ProductCategory A B)
:=
existT _
((CommaCategory S T) : Category', tt)
(CommaCategoryProjection) :
CommaCategory_ObjectT (IdentityFunctor _)
(SliceCategory_Functor LocallySmallCat
(ProductCategory A B)).
(* Anomaly: apply_coercion_args: mismatch between arguments and coercion. Please report. *)
(* Toplevel input, characters 110-142:
Error:
In environment
objA : Type
A : Category objA
objB : Type
B : Category objB
objC : Type
C : Category objC
S : OppositeCategory (FunctorCategory A C)
T : FunctorCategory B C
The term "ProductCategory A B:Category (objA * objB)" has type
"Category (objA * objB)" while it is expected to have type
"Object LocallySmallCat".
*)
End CommaCategoryProjectionFunctor.
End SecondComment.
|