1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
Require Import TestSuite.admit.
(* There are some problems in materialize_evar with local definitions,
as CO below; this is not completely sorted out yet, but at least
it fails in a smooth way at the time of today [HH] *)
(* File reduced by coq-bug-finder from 9039 lines to 7786 lines, then
from 7245 lines to 476 lines, then from 417 lines to 249 lines,
then from 171 lines to 127 lines. *)
Set Implicit Arguments.
Set Universe Polymorphism.
Definition admit {T} : T.
Admitted.
Delimit Scope object_scope with object.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope functor_scope with functor.
Delimit Scope natural_transformation_scope with natural_transformation.
Reserved Infix "o" (at level 40, left associativity).
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x
:= match p with idpath => idpath end.
Record PreCategory :=
{
Object :> Type;
Morphism : Object -> Object -> Type;
Compose : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d' where "f 'o' g" := (Compose f g)
}.
Bind Scope category_scope with PreCategory.
Arguments Compose [!C%_category s%_object d%_object d'%_object] m1%_morphism m2%_morphism : rename.
Infix "o" := Compose : morphism_scope.
Local Open Scope morphism_scope.
Record Functor (C D : PreCategory) :=
{
ObjectOf :> C -> D;
MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d);
FCompositionOf : forall s d d' (m1 : C.(Morphism) s d) (m2: C.(Morphism) d d'),
MorphismOf _ _ (m2 o m1) = (MorphismOf _ _ m2) o (MorphismOf _ _ m1)
}.
Bind Scope functor_scope with Functor.
Arguments MorphismOf [C%_category] [D%_category] F%_functor [s%_object d%_object] m%_morphism : rename, simpl nomatch.
Definition ComposeFunctors C D E
(G : Functor D E) (F : Functor C D) : Functor C E
:= Build_Functor C E
(fun c => G (F c))
admit
admit.
Infix "o" := ComposeFunctors : functor_scope.
Record NaturalTransformation C D (F G : Functor C D) :=
{
ComponentsOf :> forall c, D.(Morphism) (F c) (G c);
Commutes : forall s d (m : C.(Morphism) s d),
ComponentsOf d o F.(MorphismOf) m = G.(MorphismOf) m o ComponentsOf s
}.
Generalizable All Variables.
Section NTComposeT.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F F' F'' : Functor C D.
Variable T' : NaturalTransformation F' F''.
Variable T : NaturalTransformation F F'.
Let CO := fun c => T' c o T c.
Definition NTComposeT_Commutes s d (m : Morphism C s d)
: CO d o MorphismOf F m = MorphismOf F'' m o CO s.
admit.
Defined.
Definition NTComposeT
: NaturalTransformation F F''
:= Build_NaturalTransformation F F''
(fun c => T' c o T c)
NTComposeT_Commutes.
End NTComposeT.
Definition NTWhiskerR C D E (F F' : Functor D E) (T : NaturalTransformation F F')
(G : Functor C D)
:= Build_NaturalTransformation (F o G) (F' o G)
(fun c => T (G c))
admit.
Class NTC_Composable A B (a : A) (b : B) (T : Type) (term : T) := {}.
Definition NTC_Composable_term `{@NTC_Composable A B a b T term} := term.
Notation "T 'o' U"
:= (@NTC_Composable_term _ _ T%natural_transformation U%natural_transformation _ _ _)
: natural_transformation_scope.
Local Open Scope natural_transformation_scope.
Lemma NTWhiskerR_CompositionOf C D
(F G H : Functor C D)
(T : NaturalTransformation G H)
(T' : NaturalTransformation F G) B (I : Functor B C)
: NTWhiskerR (NTComposeT T T') I = NTComposeT (NTWhiskerR T I) (NTWhiskerR T' I).
admit.
Defined.
Definition FunctorCategory C D : PreCategory
:= @Build_PreCategory (Functor C D)
(NaturalTransformation (C := C) (D := D))
admit.
Notation "[ C , D ]" := (FunctorCategory C D) : category_scope.
Parameter C : PreCategory.
Parameter D : PreCategory.
Parameter E : PreCategory.
Fail Definition NTWhiskerR_Functorial (G : [C, D]%category)
: [[D, E], [C, E]]%category
:= Build_Functor
[C, D] [C, E]
(fun F => F o G)
(fun _ _ T => T o G)
(fun _ _ _ _ _ => inverse (NTWhiskerR_CompositionOf _ _ _)).
(* Anomaly: Uncaught exception Not_found(_). Please report. *)
|