1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
Require Import TestSuite.admit.
(* File reduced by coq-bug-finder from 279 lines to 219 lines. *)
Set Implicit Arguments.
Set Universe Polymorphism.
Definition admit {T} : T.
Admitted.
Module Export Overture.
Reserved Notation "g 'o' f" (at level 40, left associativity).
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Delimit Scope path_scope with path.
Local Open Scope path_scope.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
:= match p with idpath => idpath end.
Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g)
: forall x, f x = g x
:= fun x => match h with idpath => idpath end.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv { equiv_inv : B -> A }.
Delimit Scope equiv_scope with equiv.
Local Open Scope equiv_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope.
Class Funext.
Axiom isequiv_apD10 : `{Funext} -> forall (A : Type) (P : A -> Type) f g, IsEquiv (@apD10 A P f g) .
#[export] Existing Instance isequiv_apD10.
Definition path_forall `{Funext} {A : Type} {P : A -> Type} (f g : forall x : A, P x) :
(forall x, f x = g x) -> f = g
:=
(@apD10 A P f g)^-1.
End Overture.
Module Export Core.
Set Implicit Arguments.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.
Record PreCategory :=
{
object :> Type;
morphism : object -> object -> Type;
compose : forall s d d',
morphism d d'
-> morphism s d
-> morphism s d'
where "f 'o' g" := (compose f g);
associativity : forall x1 x2 x3 x4
(m1 : morphism x1 x2)
(m2 : morphism x2 x3)
(m3 : morphism x3 x4),
(m3 o m2) o m1 = m3 o (m2 o m1)
}.
Bind Scope category_scope with PreCategory.
Arguments compose [!C%_category s%_object d%_object d'%_object] m1%_morphism m2%_morphism : rename.
Infix "o" := compose : morphism_scope.
End Core.
Local Open Scope morphism_scope.
Record Functor (C D : PreCategory) :=
{
object_of :> C -> D;
morphism_of : forall s d, morphism C s d
-> morphism D (object_of s) (object_of d)
}.
Inductive Unit : Set :=
tt : Unit.
Definition indiscrete_category (X : Type) : PreCategory
:= @Build_PreCategory X
(fun _ _ => Unit)
(fun _ _ _ _ _ => tt)
(fun _ _ _ _ _ _ _ => idpath).
Record NaturalTransformation C D (F G : Functor C D) := { components_of :> forall c, morphism D (F c) (G c) }.
Section path_natural_transformation.
Context `{Funext}.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F G : Functor C D.
Section path.
Variables T U : NaturalTransformation F G.
Lemma path'_natural_transformation
: components_of T = components_of U
-> T = U.
admit.
Defined.
Lemma path_natural_transformation
: (forall x, T x = U x)
-> T = U.
Proof.
intros.
apply path'_natural_transformation.
apply path_forall; assumption.
Qed.
End path.
End path_natural_transformation.
Ltac path_natural_transformation :=
repeat match goal with
| _ => intro
| _ => apply path_natural_transformation; simpl
end.
Definition comma_category A B C (S : Functor A C) (T : Functor B C)
: PreCategory.
admit.
Defined.
Definition compose C D (F F' F'' : Functor C D)
(T' : NaturalTransformation F' F'') (T : NaturalTransformation F F')
: NaturalTransformation F F''
:= Build_NaturalTransformation F F''
(fun c => T' c o T c).
Infix "o" := compose : natural_transformation_scope.
Local Open Scope natural_transformation_scope.
Definition associativity `{fs : Funext}
C D F G H I
(V : @NaturalTransformation C D F G)
(U : @NaturalTransformation C D G H)
(T : @NaturalTransformation C D H I)
: (T o U) o V = T o (U o V).
Proof.
path_natural_transformation.
apply associativity.
Qed.
Definition functor_category `{Funext} (C D : PreCategory) : PreCategory
:= @Build_PreCategory (Functor C D)
(@NaturalTransformation C D)
(@compose C D)
(@associativity _ C D).
Notation "C -> D" := (functor_category C D) : category_scope.
Definition compose_functor `{Funext} (C D E : PreCategory) : object ((C -> D) -> ((D -> E) -> (C -> E))).
admit.
Defined.
Definition pullback_along `{Funext} (C C' D : PreCategory) (p : Functor C C')
: object ((C' -> D) -> (C -> D))
:= Eval hnf in compose_functor _ _ _ p.
Definition IsColimit `{Funext} C D (F : Functor D C)
(x : object
(@comma_category (indiscrete_category Unit)
(@functor_category H (indiscrete_category Unit) C)
(@functor_category H D C)
admit
(@pullback_along H D (indiscrete_category Unit) C
admit))) : Type
:= admit.
Generalizable All Variables.
Axiom fs : Funext.
#[export] Existing Instance fs.
Section bar.
Variable D : PreCategory.
Context `(has_colimits
: forall F : Functor D C,
@IsColimit _ C D F (colimits F)).
(* Error: Unsatisfied constraints: Top.3773 <= Set
(maybe a bugged tactic). *)
End bar.
|