File: HoTT_coq_078.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (43 lines) | stat: -rw-r--r-- 1,360 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Set Implicit Arguments.
Require Import Logic.

(*Global Set Universe Polymorphism.*)
Global Set Asymmetric Patterns.
Local Set Primitive Projections.

Local Open Scope type_scope.

Record prod (A B : Type) : Type :=
  pair { fst : A; snd : B }.

Arguments pair {A B} _ _.

Notation "x * y" := (prod x y) : type_scope.
Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope.

Generalizable Variables X A B f g n.

Inductive paths {A : Type} (a : A) : A -> Type :=
  idpath : paths a a.

Arguments idpath {A a} , [A] a.

Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.

Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
  match p with idpath => u end.

Definition transport_prod' {A : Type} {P Q : A -> Type} {a a' : A} (p : a = a')
  (z : P a * Q a)
  : transport (fun a => P a * Q a) p z  =  (transport _ p (fst z), transport _ p (snd z))
  := match p as p' return transport (fun a0 => P a0 * Q a0) p' z = (transport P p' (fst z), transport Q p' (snd z)) with
       | idpath => idpath
     end. (* success *)

Definition transport_prod {A : Type} {P Q : A -> Type} {a a' : A} (p : a = a')
  (z : P a * Q a)
  : transport (fun a => P a * Q a) p z  =  (transport _ p (fst z), transport _ p (snd z))
  := match p with
       | idpath => idpath
     end.