1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
|
Require Import Program Extraction ExtrOcamlBasic.
Print sig.
Section FIXPOINT.
Variable A: Type.
Variable eq: A -> A -> Prop.
Variable beq: A -> A -> bool.
Hypothesis beq_eq: forall x y, beq x y = true -> eq x y.
Hypothesis beq_neq: forall x y, beq x y = false -> ~eq x y.
Variable le: A -> A -> Prop.
Hypothesis le_trans: forall x y z, le x y -> le y z -> le x z.
Definition gt (x y: A) := le y x /\ ~eq y x.
Hypothesis gt_wf: well_founded gt.
Variable F: A -> A.
Hypothesis F_mon: forall x y, le x y -> le (F x) (F y).
Program Fixpoint iterate
(x: A) (PRE: le x (F x)) (SMALL: forall z, le (F z) z -> le x z)
{wf gt x}
: {y : A | eq y (F y) /\ forall z, le (F z) z -> le y z } :=
let x' := F x in
match beq x x' with
| true => x
| false => iterate x' _ _
end.
Next Obligation.
split.
- auto.
- apply beq_neq. auto.
Qed.
End FIXPOINT.
Recursive Extraction iterate.
|