1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
Require Import Program.Tactics.
Set Universe Polymorphism.
Module Bug11766.
Program Definition bla@{} : nat := _.
Next Obligation.
let x := constr:(Type) in exact 0.
Defined. (* was unbound univ *)
Program Definition bla'@{} : nat := _.
Solve Obligations with let x := constr:(Type) in exact 0. (* was unbound univ *)
End Bug11766.
From Coq Require Import ssreflect.
Module Bug11988.
#[local]
Obligation Tactic := idtac.
Section Foo.
Universe u.
Variable T : Type@{u}.
Variable op : T -> T -> T.
Hypothesis opC : forall x y, op x y = op y x.
Program Definition foo@{} x y : {z : T & z = op x y} :=
existT _ (op y x) _.
Next Obligation.
move=> /= x y.
by rewrite -[RHS]opC.
Qed. (* should work even though rewrite [RHS] adds a spurious universe *)
End Foo.
End Bug11988.
Module ExampleFrom11902.
Local Unset Universe Polymorphism.
Program Definition foo (X : Type) : Type :=
let x := X in forall x : x, _.
Next Obligation.
refine nat.
Defined.
End ExampleFrom11902.
|