1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
From Coq Require Export Morphisms Setoid .
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity).
Infix "≡@{ A }" := (@equiv A _)
(at level 70, only parsing, no associativity).
Notation "(≡)" := equiv (only parsing).
(** Unbundled version *)
Class Dist A := dist : nat -> relation A.
Notation "x ≡{ n }≡ y" := (dist n x y)
(at level 70, n at next level, format "x ≡{ n }≡ y").
Notation "x ≡{ n }@{ A }≡ y" := (dist (A:=A) n x y)
(at level 70, n at next level, only parsing).
Notation NonExpansive f := (forall n, Proper (dist n ==> dist n ==> dist n) f).
Record OfeMixin A `{Equiv A, Dist A} := {
mixin_equiv_dist (x y : A) : x ≡ y <-> forall n, x ≡{n}≡ y;
}.
(** Bundled version *)
Structure ofeT := OfeT {
ofe_car :> Type;
ofe_equiv : Equiv ofe_car;
ofe_dist : Dist ofe_car;
ofe_mixin : OfeMixin ofe_car
}.
#[export] Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
#[export] Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
(** Lifting properties from the mixin *)
Section ofe_mixin.
Context {A : ofeT}.
Implicit Types x y : A.
Lemma equiv_dist x y : x ≡ y <-> forall n, x ≡{n}≡ y.
Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
End ofe_mixin.
Axiom _0 : Prop. (* dummy which somehow bothers mangle names *)
Set Mangle Names.
(** General properties *)
Section ofe.
Context {A : ofeT}.
Lemma ne_proper_2 {B C : ofeT} (f : A -> B -> C) `{Hf:!NonExpansive f} :
Proper ((≡) ==> (≡) ==> (≡)) f.
Proof.
unfold Proper, respectful.
setoid_rewrite equiv_dist.
intros.
apply Hf;auto.
Qed.
End ofe.
|