1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
Module Mono.
Module Transparent.
Fixpoint F (n : nat) (A : Type) {struct n} : nat
with G (n : nat) (A:Type@{_}) {struct n} : nat.
Proof.
1: pose (match n with S n => G n A | 0 => 0 end).
all: exact 0.
Defined.
End Transparent.
Module Opaque.
Fixpoint F (n : nat) (A : Type) {struct n} : nat
with G (n : nat) (A:Type@{_}) {struct n} : nat.
Proof.
1: pose (match n with S n => G n A | 0 => 0 end).
all: exact 0.
Qed.
End Opaque.
End Mono.
Module Poly.
Set Universe Polymorphism.
Module Transparent.
Fixpoint F (n : nat) (A : Type) {struct n} : nat
with G (n : nat) (A:Type@{_}) {struct n} : nat.
Proof.
1: pose (match n with S n => G n A | 0 => 0 end).
all: exact 0.
Defined.
Check F@{_}. Check G@{_}.
End Transparent.
Module Opaque.
Fixpoint F (n : nat) (A : Type) {struct n} : nat
with G (n : nat) (A:Type@{_}) {struct n} : nat.
Proof.
1: pose (match n with S n => G n A | 0 => 0 end).
all: exact 0.
Qed.
Check F@{_}. Check G@{_}.
End Opaque.
End Poly.
|