1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
Require Import Relations.
Require Import Setoid.
Require Import Ring_theory.
Require Import Ring_base.
Parameter R : Type.
Parameter Rone Rzero : R.
Parameter Rplus Rmult Rminus : R -> R -> R.
Parameter Rneg : R -> R.
Lemma my_ring_theory : @ring_theory R Rzero Rone Rplus Rmult Rminus Rneg (@eq
R).
Admitted.
Parameter Req : R -> R -> Prop.
Axiom Req_refl : reflexive _ Req.
Axiom Req_sym : symmetric _ Req.
Axiom Req_trans : transitive _ Req.
Add Relation R Req
reflexivity proved by Req_refl
symmetry proved by Req_sym
transitivity proved by Req_trans
as Req_rel.
Add Ring my_ring : my_ring_theory (abstract).
|