File: bug_15048.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (270 lines) | stat: -rw-r--r-- 8,346 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270


Reserved Notation "x = y  :>  T"
(at level 70, y at next level, no associativity).
Reserved Notation "x = y" (at level 70, no associativity).

Reserved Notation "x + y" (at level 50, left associativity).

Reserved Notation "n .+1" (at level 2, left associativity, format "n .+1").
Reserved Notation "n .+2" (at level 2, left associativity, format "n .+2").
Reserved Notation "g 'o' f" (at level 40, left associativity).
Reserved Notation "! x" (at level 3, format "'!' x").
Declare Scope path_scope.
Delimit Scope type_scope with type.
Delimit Scope trunc_scope with trunc.

Global Open Scope trunc_scope.
Global Open Scope path_scope.
Global Open Scope type_scope.

Global Set Universe Polymorphism.

Notation "A -> B" := (forall (_ : A), B) : type_scope.


Create HintDb typeclass_instances discriminated.

Definition Relation (A : Type) := A -> A -> Type.

Class Symmetric {A} (R : Relation A) :=
  symmetry : forall x y, R x y -> R y x.

Notation Type0 := Set.

Cumulative Inductive paths {A : Type} (a : A) : A -> Type :=
  idpath : paths a a.

Arguments idpath {A a} , [A] a.

Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.

Definition inverse {A : Type} {x y : A} (p : x = y) : y = x
  := match p with idpath => idpath end.

Global Instance symmetric_paths {A} : Symmetric (@paths A) | 0 := @inverse A.

Notation "1" := idpath : path_scope.

Class Contr_internal (A : Type) := Build_Contr {
  center : A ;
  contr : (forall y : A, center = y)
}.

Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.

Bind Scope trunc_scope with trunc_index.

Notation "n .+1" := (trunc_S n) : trunc_scope.
Notation "n .+2" := (n.+1.+1)%trunc : trunc_scope.

Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
  match n with
    | minus_two => Contr_internal A
    | n'.+1 => forall (x y : A), IsTrunc_internal n' (x = y)
  end.

Class IsTrunc (n : trunc_index) (A : Type) : Type :=
  Trunc_is_trunc : IsTrunc_internal n A.

Notation Contr := (IsTrunc minus_two).
Notation IsHSet := (IsTrunc minus_two.+2).

Inductive Empty : Type0 := .

Inductive Unit : Type0 := tt : Unit.
Module Export Core.
Set Implicit Arguments.

Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.

Record PreCategory :=
  Build_PreCategory' {
      object :> Type;
      morphism : object -> object -> Type;

      identity : forall x, morphism x x;
      compose : forall s d d',
                  morphism d d'
                  -> morphism s d
                  -> morphism s d'
                              where "f 'o' g" := (compose f g);

      associativity : forall x1 x2 x3 x4
                             (m1 : morphism x1 x2)
                             (m2 : morphism x2 x3)
                             (m3 : morphism x3 x4),
                        (m3 o m2) o m1 = m3 o (m2 o m1);

      associativity_sym : forall x1 x2 x3 x4
                                 (m1 : morphism x1 x2)
                                 (m2 : morphism x2 x3)
                                 (m3 : morphism x3 x4),
                            m3 o (m2 o m1) = (m3 o m2) o m1;

      left_identity : forall a b (f : morphism a b), identity b o f = f;
      right_identity : forall a b (f : morphism a b), f o identity a = f;

      identity_identity : forall x, identity x o identity x = identity x;

      trunc_morphism : forall s d, IsHSet (morphism s d)
    }.

Bind Scope category_scope with PreCategory.
Arguments identity {!C%_category} / x%_object : rename.
Arguments compose {!C%_category} / {s d d'}%_object (m1 m2)%_morphism : rename.

Infix "o" := compose : morphism_scope.

End Core.
Delimit Scope functor_scope with functor.

Local Open Scope morphism_scope.

Section Functor.
  Variables C D : PreCategory.

  Record Functor :=
    {
      object_of :> C -> D;
      morphism_of : forall s d, morphism C s d
                                -> morphism D (object_of s) (object_of d);
      composition_of : forall s d d'
                              (m1 : morphism C s d) (m2: morphism C d d'),
                         morphism_of _ _ (m2 o m1)
                         = (morphism_of _ _ m2) o (morphism_of _ _ m1);
      identity_of : forall x, morphism_of _ _ (identity x)
                              = identity (object_of x)
    }.
End Functor.

Generalizable Variables A B m n f.

Fixpoint trunc_index_inc (k : trunc_index) (n : nat)
  : trunc_index
  := match n with
      | O => k
      | S m => (trunc_index_inc k m).+1
    end.

Definition nat_to_trunc_index (n : nat) : trunc_index
  := (trunc_index_inc minus_two n).+2.

Definition int_to_trunc_index (v : Decimal.int) : option trunc_index
  := match v with
     | Decimal.Pos d => Some (nat_to_trunc_index (Nat.of_uint d))
     | Decimal.Neg d => match Nat.of_uint d with
                        | 2%nat => Some minus_two
                        | 1%nat => Some (minus_two.+1)
                        | 0 => Some (minus_two.+2)
                        | _ => None
                        end
     end.

Definition num_int_to_trunc_index v : option trunc_index :=
  match Nat.of_num_int v with
  | Some n => Some (nat_to_trunc_index n)
  | None => None
  end.

Fixpoint trunc_index_to_little_uint n acc :=
  match n with
  | minus_two => acc
  | minus_two.+1 => acc
  | minus_two.+2 => acc
  | trunc_S n => trunc_index_to_little_uint n (Decimal.Little.succ acc)
  end.

Definition trunc_index_to_int n :=
  match n with
  | minus_two => Decimal.Neg (Nat.to_uint 2)
  | minus_two.+1 => Decimal.Neg (Nat.to_uint 1)
  | n => Decimal.Pos (Decimal.rev (trunc_index_to_little_uint n Decimal.zero))
  end.

Definition trunc_index_to_num_int n :=
  Number.IntDecimal (trunc_index_to_int n).


Global Instance istrunc_succ `{IsTrunc n A}
  : IsTrunc n.+1 A | 1000.
Admitted.

Global Instance contr_unit : Contr Unit | 0 := let x := {|
  center := tt;
  contr := fun t : Unit => match t with tt => 1 end
|} in x.

Definition groupoid_category X `{IsTrunc (trunc_S (trunc_S (trunc_S minus_two))) X} : PreCategory.
Admitted.
  Definition discrete_category X `{IsHSet X} := groupoid_category X.
  Section indiscrete_category.

    Variable X : Type.

    Definition indiscrete_category : PreCategory
      := @Build_PreCategory' X
                             (fun _ _ => Unit)
                             (fun _ => tt)
                             (fun _ _ _ _ _ => tt)
                             (fun _ _ _ _ _ _ _ => idpath)
                             (fun _ _ _ _ _ _ _ => idpath)
                             (fun _ _ f => match f with tt => idpath end)
                             (fun _ _ f => match f with tt => idpath end)
                             (fun _ => idpath)
                             _.
  End indiscrete_category.
Local Open Scope nat_scope.

  Fixpoint CardinalityRepresentative (n : nat) : Type0 :=
    match n with
      | 0 => Empty
      | 1 => Unit
      | S n' => (CardinalityRepresentative n' + Unit)%type
    end.

  Coercion CardinalityRepresentative : nat >-> Sortclass.

  Global Instance trunc_cardinality_representative (n : nat)
  : IsHSet (CardinalityRepresentative n).
Admitted.

  Definition nat_category (n : nat) :=
    match n with
      | 0 => indiscrete_category 0
      | 1 => indiscrete_category 1
      | S (S n') => discrete_category (S (S n'))
    end.
    Notation "1" := (nat_category 1) : category_scope.
Notation terminal_category := (nat_category 1) (only parsing).

Class IsTerminalCategory (C : PreCategory)
      `{Contr (object C)}
      `{forall s d, Contr (morphism C s d)} := {}.
Global Instance: IsTerminalCategory 1 | 0 := {}.
Generalizable All Variables.

Section functors.
  Variable C : PreCategory.

  Definition from_terminal `{@IsTerminalCategory one Hone Hone'} (c : C)
  : Functor one C
    := Build_Functor
         one C
         (fun _ => c)
         (fun _ _ _ => identity c)
         (fun _ _ _ _ _ => symmetry _ _ (@identity_identity _ _))
         (fun _ => idpath).
End functors.

Local Notation "! x" := (@from_terminal _ terminal_category _ _ _ x) : functor_scope.

Definition CC_Functor' (C : PreCategory) (D : PreCategory) := Functor C D.

Coercion cc_functor_from_terminal' (C : PreCategory) (x : C) : CC_Functor' _ C
  := (!x)%functor.