1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
|
Require Import Coq.Program.Equality.
Inductive star {genv state : Type}
(step : genv -> state -> state -> Prop)
(ge : genv) : state -> state -> Prop :=
| star_refl : forall s : state, star step ge s s
.
Parameter genv expr env mem : Type.
Inductive state : Type :=
| State : expr -> env -> mem -> state.
Parameter step : genv -> state -> state -> Prop.
Section Test.
Variable ge : genv.
Axiom admit:False.
Set Printing Universes. Set Printing All.
Lemma compat_eval_steps
a b e a' b'
(H:star step ge (State a e b) (State a' e b'))
: True.
Proof.
intro_block H.
generalize_eqs_vars H.
destruct admit.
Qed.
(* Error: Illegal application:
The term "@eq_refl" of type "forall (A : Type@{eq.u0}) (x : A), @eq A x x"
cannot be applied to the terms
"Type@{foo.11}" : "Type@{foo.11+1}"
"genv" : "Type@{genv.u0}"
The 1st term has type "Type@{foo.11+1}" which should be coercible to "Type@{eq.u0}".
*)
End Test.
|