1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
(** Occur-check for Meta (up to delta) *)
(** LNMItPredShort.v Version 2.0 July 2008 *)
(** does not need impredicative Set, runs under V8.2, tested with SVN 11296 *)
(** Copyright Ralph Matthes, I.R.I.T., C.N.R.S. & University of Toulouse*)
Set Implicit Arguments.
(** the universe of all monotypes *)
Definition k0 := Set.
(** the type of all type transformations *)
Definition k1 := k0 -> k0.
(** the type of all rank-2 type transformations *)
Definition k2 := k1 -> k1.
(** polymorphic identity *)
Definition id : forall (A:Set), A -> A := fun A x => x.
(** composition *)
Definition comp (A B C:Set)(g:B->C)(f:A->B) : A->C := fun x => g (f x).
Infix "o" := comp (at level 90).
Definition sub_k1 (X Y:k1) : Type :=
forall A:Set, X A -> Y A.
Infix "c_k1" := sub_k1 (at level 60).
(** monotonicity *)
Definition mon (X:k1) : Type := forall (A B:Set), (A -> B) -> X A -> X B.
(** extensionality *)
Definition ext (X:k1)(h: mon X): Prop :=
forall (A B:Set)(f g:A -> B),
(forall a, f a = g a) -> forall r, h _ _ f r = h _ _ g r.
(** first functor law *)
Definition fct1 (X:k1)(m: mon X) : Prop :=
forall (A:Set)(x:X A), m _ _ (id(A:=A)) x = x.
(** second functor law *)
Definition fct2 (X:k1)(m: mon X) : Prop :=
forall (A B C:Set)(f:A -> B)(g:B -> C)(x:X A),
m _ _ (g o f) x = m _ _ g (m _ _ f x).
(** pack up the good properties of the approximation into
the notion of an extensional functor *)
Record EFct (X:k1) : Type := mkEFct
{ m : mon X;
e : ext m;
f1 : fct1 m;
f2 : fct2 m }.
(** preservation of extensional functors *)
Definition pEFct (F:k2) : Type :=
forall (X:k1), EFct X -> EFct (F X).
(** we show some closure properties of pEFct, depending on such properties
for EFct *)
Definition moncomp (X Y:k1)(mX:mon X)(mY:mon Y): mon (fun A => X(Y A)).
Proof.
red.
intros A B f x.
exact (mX (Y A)(Y B) (mY A B f) x).
Defined.
(** closure under composition *)
Lemma compEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X(Y A)).
Proof.
intros ef1 ef2.
apply (mkEFct(m:=moncomp (m ef1) (m ef2))); red; intros; unfold moncomp.
(* prove ext *)
apply (e ef1).
intro.
apply (e ef2); trivial.
(* prove fct1 *)
rewrite (e ef1 (m ef2 (id (A:=A))) (id(A:=Y A))).
apply (f1 ef1).
intro.
apply (f1 ef2).
(* prove fct2 *)
rewrite (e ef1 (m ef2 (g o f))((m ef2 g)o(m ef2 f))).
apply (f2 ef1).
intro.
unfold comp at 2.
apply (f2 ef2).
Defined.
Corollary comppEFct (F G:k2): pEFct F -> pEFct G ->
pEFct (fun X A => F X (G X A)).
Proof.
red.
intros.
apply compEFct; auto.
Defined.
(** closure under sums *)
Lemma sumEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X A + Y A)%type.
Proof.
intros ef1 ef2.
set (m12:=fun (A B:Set)(f:A->B) x => match x with
| inl y => inl _ (m ef1 f y)
| inr y => inr _ (m ef2 f y)
end).
apply (mkEFct(m:=m12)); red; intros.
(* prove ext *)
destruct r.
simpl.
apply (f_equal (fun x=>inl (A:=X B) (Y B) x)).
apply (e ef1); trivial.
simpl.
apply (f_equal (fun x=>inr (X B) (B:=Y B) x)).
apply (e ef2); trivial.
(* prove fct1 *)
destruct x.
simpl.
apply (f_equal (fun x=>inl (A:=X A) (Y A) x)).
apply (f1 ef1).
simpl.
apply (f_equal (fun x=>inr (X A) (B:=Y A) x)).
apply (f1 ef2).
(* prove fct2 *)
destruct x.
simpl.
rewrite (f2 ef1); reflexivity.
simpl.
rewrite (f2 ef2); reflexivity.
Defined.
Corollary sumpEFct (F G:k2): pEFct F -> pEFct G ->
pEFct (fun X A => F X A + G X A)%type.
Proof.
red.
intros.
apply sumEFct; auto.
Defined.
(** closure under products *)
Lemma prodEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X A * Y A)%type.
Proof.
intros ef1 ef2.
set (m12:=fun (A B:Set)(f:A->B) x => match x with
(x1,x2) => (m ef1 f x1, m ef2 f x2) end).
apply (mkEFct(m:=m12)); red; intros.
(* prove ext *)
destruct r as [x1 x2].
simpl.
apply injective_projections; simpl.
apply (e ef1); trivial.
apply (e ef2); trivial.
(* prove fct1 *)
destruct x as [x1 x2].
simpl.
apply injective_projections; simpl.
apply (f1 ef1).
apply (f1 ef2).
(* prove fct2 *)
destruct x as [x1 x2].
simpl.
apply injective_projections; simpl.
apply (f2 ef1).
apply (f2 ef2).
Defined.
Corollary prodpEFct (F G:k2): pEFct F -> pEFct G ->
pEFct (fun X A => F X A * G X A)%type.
Proof.
red.
intros.
apply prodEFct; auto.
Defined.
(** the identity in k2 preserves extensional functors *)
Lemma idpEFct: pEFct (fun X => X).
Proof.
red.
intros.
assumption.
Defined.
(** a variant for the eta-expanded identity *)
Lemma idpEFct_eta: pEFct (fun X A => X A).
Proof.
red.
intros X ef.
destruct ef as [m0 e0 f01 f02].
change (mon X) with (mon (fun A => X A)) in m0.
apply (mkEFct (m:=m0) e0 f01 f02).
Defined.
(** the identity in k1 "is" an extensional functor *)
Lemma idEFct: EFct (fun A => A).
Proof.
set (mId:=fun A B (f:A->B)(x:A) => f x).
apply (mkEFct(m:=mId)).
red.
intros.
unfold mId.
apply H.
red.
reflexivity.
red.
reflexivity.
Defined.
(** constants in k2 *)
Lemma constpEFct (X:k1): EFct X -> pEFct (fun _ => X).
Proof.
red.
intros.
assumption.
Defined.
(** constants in k1 *)
Lemma constEFct (C:Set): EFct (fun _ => C).
Proof.
set (mC:=fun A B (f:A->B)(x:C) => x).
apply (mkEFct(m:=mC)); red; intros; unfold mC; reflexivity.
Defined.
(** the option type *)
Lemma optionEFct: EFct (fun (A:Set) => option A).
apply (mkEFct (X:=fun (A:Set) => option A)(m:=option_map)); red; intros.
destruct r.
simpl.
rewrite H.
reflexivity.
reflexivity.
destruct x; reflexivity.
destruct x; reflexivity.
Defined.
(** natural transformations from (X,mX) to (Y,mY) *)
Definition NAT(X Y:k1)(j:X c_k1 Y)(mX:mon X)(mY:mon Y) : Prop :=
forall (A B:Set)(f:A->B)(t:X A), j B (mX A B f t) = mY _ _ f (j A t).
Module Type LNMIt_Type.
Parameter F:k2.
Parameter FpEFct: pEFct F.
Parameter mu20: k1.
Definition mu2: k1:= fun A => mu20 A.
Parameter mapmu2: mon mu2.
Definition MItType: Type :=
forall G : k1, (forall X : k1, X c_k1 G -> F X c_k1 G) -> mu2 c_k1 G.
Parameter MIt0 : MItType.
Definition MIt : MItType:= fun G s A t => MIt0 s t.
Definition InType : Type :=
forall (X:k1)(ef:EFct X)(j: X c_k1 mu2),
NAT j (m ef) mapmu2 -> F X c_k1 mu2.
Parameter In : InType.
Axiom mapmu2Red : forall (A:Set)(X:k1)(ef:EFct X)(j: X c_k1 mu2)
(n: NAT j (m ef) mapmu2)(t: F X A)(B:Set)(f:A->B),
mapmu2 f (In ef n t) = In ef n (m (FpEFct ef) f t).
Axiom MItRed : forall (G : k1)
(s : forall X : k1, X c_k1 G -> F X c_k1 G)(X : k1)(ef:EFct X)(j: X c_k1 mu2)
(n: NAT j (m ef) mapmu2)(A:Set)(t:F X A),
MIt s (In ef n t) = s X (fun A => (MIt s (A:=A)) o (j A)) A t.
Definition mu2IndType : Prop :=
forall (P : (forall A : Set, mu2 A -> Prop)),
(forall (X : k1)(ef:EFct X)(j : X c_k1 mu2)(n: NAT j (m ef) mapmu2),
(forall (A : Set) (x : X A), P A (j A x)) ->
forall (A:Set)(t : F X A), P A (In ef n t)) ->
forall (A : Set) (r : mu2 A), P A r.
Axiom mu2Ind : mu2IndType.
End LNMIt_Type.
(** BushDepPredShort.v Version 0.2 July 2008 *)
(** does not need impredicative Set, produces stack overflow under V8.2, tested
with SVN 11296 *)
(** Copyright Ralph Matthes, I.R.I.T., C.N.R.S. & University of Toulouse *)
Set Implicit Arguments.
Require Import List.
Definition listk1 (A:Set) : Set := list A.
Open Scope type_scope.
Definition BushF(X:k1)(A:Set) := unit + A * X (X A).
Definition bushpEFct : pEFct BushF.
Proof.
unfold BushF.
apply sumpEFct.
apply constpEFct.
apply constEFct.
apply prodpEFct.
apply constpEFct.
apply idEFct.
apply comppEFct.
apply idpEFct.
apply idpEFct_eta.
Defined.
Module Type BUSH := LNMIt_Type with Definition F:=BushF
with Definition FpEFct :=
bushpEFct.
Module Bush (BushBase:BUSH).
Definition Bush : k1 := BushBase.mu2.
Definition bush : mon Bush := BushBase.mapmu2.
End Bush.
Definition Id : k1 := fun X => X.
Fixpoint Pow (X:k1)(k:nat){struct k}:k1:=
match k with 0 => Id
| S k' => fun A => X (Pow X k' A)
end.
Fixpoint POW (k:nat)(X:k1)(m:mon X){struct k} : mon (Pow X k) :=
match k return mon (Pow X k)
with 0 => fun _ _ f => f
| S k' => fun _ _ f => m _ _ (POW k' m f)
end.
Module Type BushkToList_Type.
Declare Module Import BP: BUSH.
Definition F:=BushF.
Definition FpEFct:= bushpEFct.
Definition mu20 := mu20.
Definition mu2 := mu2.
Definition mapmu2 := mapmu2.
Definition MItType:= MItType.
Definition MIt0 := MIt0.
Definition MIt := MIt.
Definition InType := InType.
Definition In := In.
Definition mapmu2Red:=mapmu2Red.
Definition MItRed:=MItRed.
Definition mu2IndType:=mu2IndType.
Definition mu2Ind:=mu2Ind.
Definition Bush:= mu2.
Module BushM := Bush BP.
Parameter BushkToList: forall(k:nat)(A:k0)(t:Pow Bush k A), list A.
Axiom BushkToList0: forall(A:k0)(t:Pow Bush 0 A), BushkToList 0 A t = t::nil.
End BushkToList_Type.
Module BushDep (BushkToListM:BushkToList_Type).
Module Bush := Bush BushkToListM.
Import Bush.
Import BushkToListM.
Lemma BushkToList0NAT: NAT(Y:=listk1) (BushkToList 0) (POW 0 bush) map.
Proof.
red.
intros.
simpl.
rewrite BushkToList0.
(* stack overflow for coqc and coqtop *)
Abort.
End BushDep.
|