1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
Set Universe Polymorphism.
Inductive bool@{q| |} : Type@{q|Set} := | true : bool | false : bool.
Definition nand@{q| |} (a b : bool@{q|}) : bool@{q|} :=
match a , b with
| true , true => false
| _ , _ => true
end.
Inductive seq@{q|u|} {A : Type@{q|u}} (a : A) : A -> Type@{q|u} := | srefl : seq a a.
Arguments srefl {_ _}.
Definition seq_elim@{q|u v|} :=
fun (A : Type@{q|u}) (x : A) (P : A -> Type@{q|v}) (f : P x) (a : A) (e : seq x a) =>
match e in (seq _ a0) return (P a0) with
| srefl => f
end.
Register seq as core.eq.type.
Register srefl as core.eq.refl.
Register seq_elim as core.eq.rect.
Lemma foo@{q| |} (f : bool@{q|} -> bool@{q|}) (x : bool@{q|}) : seq (f true) (f true).
Proof.
remember (f true) as b eqn : ftrue.
reflexivity.
Qed.
Lemma f3_eq_f@{q| |} (f : bool@{q|} -> bool@{q|}) (x : bool@{q|}) : seq (f (f (f x))) (f x).
Proof.
remember (f true) as b eqn : ftrue.
remember (f false) as c eqn : ffalse.
Validate Proof.
destruct x,b,c.
all:repeat rewrite <-?ftrue, <-?ffalse.
all: reflexivity.
Qed.
|