1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
(* Check that "inversion as" manages names as expected *)
Inductive type: Set
:= | int: type
| pointer: type -> type.
Print type.
Parameter value_set
: type -> Set.
Parameter string : Set.
Parameter Z : Set.
Inductive lvalue (t: type): Set
:= | var: string -> lvalue t (* name of the variable *)
| lvalue_loc: Z -> lvalue t (* address of the variable *)
| deref_l: lvalue (pointer t) -> lvalue t (* deref an lvalue ptr *)
| deref_r: rvalue (pointer t) -> lvalue t (* deref an rvalue ptr *)
with rvalue (t: type): Set
:= | value_of: lvalue t -> rvalue t (* variable as value *)
| mk_rvalue: value_set t -> rvalue t. (* literal value *)
Print lvalue.
Inductive statement: Set
:= | void_stat: statement
| var_loc: (* to be destucted at end of scope *)
forall (t: type) (n: string) (loc: Z), statement
| var_ref: (* not to be destructed *)
forall (t: type) (n: string) (loc: Z), statement
| var_def: (* var def as typed in code *)
forall (t:type) (n: string) (val: rvalue t), statement
| assign:
forall (t: type) (var: lvalue t) (val: rvalue t), statement
| group:
forall (l: list statement), statement
| fun_def:
forall (s: string) (l: list statement), statement
| param_decl:
forall (t: type) (n: string), statement
| delete:
forall a: Z, statement.
Inductive expr: Set
:= | statement_to_expr: statement -> expr
| lvalue_to_expr: forall t: type, lvalue t -> expr
| rvalue_to_expr: forall t: type, rvalue t -> expr.
Inductive executable_prim_expr: expr -> Set
:=
(* statements *)
| var_def_primitive:
forall (t: type) (n: string) (loc: Z),
executable_prim_expr
(statement_to_expr
(var_def t n
(value_of t (lvalue_loc t loc))))
| assign_primitive:
forall (t: type) (loc1 loc2: Z),
executable_prim_expr
(statement_to_expr
(assign t (lvalue_loc t loc1)
(value_of t (lvalue_loc t loc2))))
(* rvalue *)
| mk_rvalue_primitive:
forall (t: type) (v: value_set t),
executable_prim_expr
(rvalue_to_expr t (mk_rvalue t v))
(* lvalue *)
(* var *)
| var_primitive:
forall (t: type) (n: string),
executable_prim_expr (lvalue_to_expr t (var t n))
(* deref_l *)
| deref_l_primitive:
forall (t: type) (loc: Z),
executable_prim_expr
(lvalue_to_expr t
(deref_l t (lvalue_loc (pointer t) loc)))
(* deref_r *)
| deref_r_primitive:
forall (t: type) (loc: Z),
executable_prim_expr
(lvalue_to_expr t
(deref_r t
(value_of (pointer t)
(lvalue_loc (pointer t) loc)))).
Inductive executable_sub_expr: expr -> Set
:= | executable_sub_expr_prim:
forall e: expr,
executable_prim_expr e ->
executable_sub_expr e
(* statements *)
| var_def_sub_rvalue:
forall (t: type) (n: string) (rv: rvalue t),
executable_sub_expr (rvalue_to_expr t rv) ->
executable_sub_expr (statement_to_expr (var_def t n rv))
| assign_sub_lvalue:
forall (t: type) (lv: lvalue t) (rv: rvalue t),
executable_sub_expr (lvalue_to_expr t lv) ->
executable_sub_expr (statement_to_expr (assign t lv rv))
| assign_sub_rvalue:
forall (t: type) (lv: lvalue t) (rv: rvalue t),
executable_sub_expr (rvalue_to_expr t rv) ->
executable_sub_expr (statement_to_expr (assign t lv rv))
(* rvalue *)
| value_of_sub_lvalue:
forall (t: type) (lv: lvalue t),
executable_sub_expr (lvalue_to_expr t lv) ->
executable_sub_expr (rvalue_to_expr t (value_of t lv))
(* lvalue *)
| deref_l_sub_lvalue:
forall (t: type) (lv: lvalue (pointer t)),
executable_sub_expr (lvalue_to_expr (pointer t) lv) ->
executable_sub_expr (lvalue_to_expr t (deref_l t lv))
| deref_r_sub_rvalue:
forall (t: type) (rv: rvalue (pointer t)),
executable_sub_expr (rvalue_to_expr (pointer t) rv) ->
executable_sub_expr (lvalue_to_expr t (deref_r t rv)).
Inductive expr_kind: Set
:= | statement_kind: expr_kind
| lvalue_kind: type -> expr_kind
| rvalue_kind: type -> expr_kind.
Definition expr_to_kind: expr -> expr_kind.
intro e.
destruct e.
exact statement_kind.
exact (lvalue_kind t).
exact (rvalue_kind t).
Defined.
Inductive def_sub_expr_subs:
forall e: expr,
forall ee: executable_sub_expr e,
forall ee': expr,
forall e': expr,
Prop
:= | def_sub_expr_subs_prim:
forall e: expr,
forall p: executable_prim_expr e,
forall ee': expr,
expr_to_kind e = expr_to_kind ee' ->
def_sub_expr_subs e (executable_sub_expr_prim e p) ee' ee'
| def_sub_expr_subs_var_def_sub_rvalue:
forall (t: type) (n: string),
forall rv rv': rvalue t,
forall ee': expr,
forall se_rv: executable_sub_expr (rvalue_to_expr t rv),
def_sub_expr_subs (rvalue_to_expr t rv) se_rv ee'
(rvalue_to_expr t rv') ->
def_sub_expr_subs
(statement_to_expr (var_def t n rv))
(var_def_sub_rvalue t n rv se_rv)
ee'
(statement_to_expr (var_def t n rv'))
| def_sub_expr_subs_assign_sub_lvalue:
forall t: type,
forall lv lv': lvalue t,
forall rv: rvalue t,
forall ee': expr,
forall se_lv: executable_sub_expr (lvalue_to_expr t lv),
def_sub_expr_subs (lvalue_to_expr t lv) se_lv ee'
(lvalue_to_expr t lv') ->
def_sub_expr_subs
(statement_to_expr (assign t lv rv))
(assign_sub_lvalue t lv rv se_lv)
ee'
(statement_to_expr (assign t lv' rv))
| def_sub_expr_subs_assign_sub_rvalue:
forall t: type,
forall lv: lvalue t,
forall rv rv': rvalue t,
forall ee': expr,
forall se_rv: executable_sub_expr (rvalue_to_expr t rv),
def_sub_expr_subs (rvalue_to_expr t rv) se_rv ee'
(rvalue_to_expr t rv') ->
def_sub_expr_subs
(statement_to_expr (assign t lv rv))
(assign_sub_rvalue t lv rv se_rv)
ee'
(statement_to_expr (assign t lv rv'))
| def_sub_expr_subs_value_of_sub_lvalue:
forall t: type,
forall lv lv': lvalue t,
forall ee': expr,
forall se_lv: executable_sub_expr (lvalue_to_expr t lv),
def_sub_expr_subs (lvalue_to_expr t lv) se_lv ee'
(lvalue_to_expr t lv') ->
def_sub_expr_subs
(rvalue_to_expr t (value_of t lv))
(value_of_sub_lvalue t lv se_lv)
ee'
(rvalue_to_expr t (value_of t lv'))
| def_sub_expr_subs_deref_l_sub_lvalue:
forall t: type,
forall lv lv': lvalue (pointer t),
forall ee': expr,
forall se_lv: executable_sub_expr (lvalue_to_expr (pointer t) lv),
def_sub_expr_subs (lvalue_to_expr (pointer t) lv) se_lv ee'
(lvalue_to_expr (pointer t) lv') ->
def_sub_expr_subs
(lvalue_to_expr t (deref_l t lv))
(deref_l_sub_lvalue t lv se_lv)
ee'
(lvalue_to_expr t (deref_l t lv'))
| def_sub_expr_subs_deref_r_sub_rvalue:
forall t: type,
forall rv rv': rvalue (pointer t),
forall ee': expr,
forall se_rv: executable_sub_expr (rvalue_to_expr (pointer t) rv),
def_sub_expr_subs (rvalue_to_expr (pointer t) rv) se_rv ee'
(rvalue_to_expr (pointer t) rv') ->
def_sub_expr_subs
(lvalue_to_expr t (deref_r t rv))
(deref_r_sub_rvalue t rv se_rv)
ee'
(lvalue_to_expr t (deref_r t rv')).
Lemma type_dec: forall t t': type, {t = t'} + {t <> t'}.
Proof.
intros t.
induction t as [|t IH].
destruct t'.
tauto.
right.
discriminate.
destruct t'.
right.
discriminate.
destruct (IH t') as [H|H].
left.
f_equal.
tauto.
right.
injection.
tauto.
Qed.
Check type_dec.
Definition sigT_get_proof:
forall T: Type,
forall eq_dec_T: forall t t': T, {t = t'} + {~ t = t'},
forall P: T -> Type,
forall t: T,
P t ->
sigT P ->
P t.
intros T eq_dec_T P t H1 H2.
destruct H2 as [t' H2].
destruct (eq_dec_T t t') as [H3|H3].
rewrite H3.
exact H2.
exact H1.
Defined.
Axiom sigT_get_proof_existT_same:
forall T: Type,
forall eq_dec_T: forall t t': T, {t = t'} + {~ t = t'},
forall P: T -> Type,
forall t: T,
forall H1 H2: P t,
sigT_get_proof T eq_dec_T P t H1 (existT P t H2) = H2.
Theorem existT_injective:
forall T,
(forall t1 t2: T, { t1 = t2 } + { t1 <> t2 }) ->
forall P: T -> Type,
forall t: T,
forall pt1 pt2: P t,
existT P t pt1 = existT P t pt2 ->
pt1 = pt2.
Proof.
intros T T_dec P t pt1 pt2 H1.
pose (H2 := f_equal (sigT_get_proof T T_dec P t pt1) H1).
repeat rewrite sigT_get_proof_existT_same in H2.
assumption.
Qed.
Ltac decide_equality_sub dec x x' H :=
destruct (dec x x') as [H|H];
[subst x'; try tauto|try(right; injection; tauto; fail)].
Axiom value_set_dec:
forall t: type,
forall v v': value_set t,
{v = v'} + {v <> v'}.
Theorem lvalue_dec:
forall (t: type) (l l': lvalue t), {l = l'} + {l <> l'}
with rvalue_dec:
forall (t: type) (r r': rvalue t), {r = r'} + {r <> r'}.
Admitted.
Theorem sub_expr_subs_same_kind:
forall e: expr,
forall ee: executable_sub_expr e,
forall ee': expr,
forall e': expr,
def_sub_expr_subs e ee ee' e' ->
expr_to_kind e = expr_to_kind e'.
Proof.
intros e ee ee' e' H1.
case H1; try (intros; tauto; fail).
Qed.
Theorem def_sub_expr_subs_assign_sub_lvalue_inversion:
forall t: type,
forall lv: lvalue t,
forall rv: rvalue t,
forall ee' e': expr,
forall ee_sub: executable_sub_expr (lvalue_to_expr t lv),
def_sub_expr_subs (statement_to_expr (assign t lv rv))
(assign_sub_lvalue t lv rv ee_sub) ee' e' ->
{ lv': lvalue t
| def_sub_expr_subs (lvalue_to_expr t lv) ee_sub ee'
(lvalue_to_expr t lv')
& e' = statement_to_expr (assign t lv' rv) }.
Proof.
intros t lv rv ee' [s'|t' lv''|t' rv''] ee_sub H1;
try discriminate (sub_expr_subs_same_kind _ _ _ _ H1).
destruct s' as [| | | |t' lv'' rv''| | | |];
try(assert (H2: False); [inversion H1|elim H2]; fail).
destruct (type_dec t t') as [H2|H2];
[|assert (H3: False);
[|elim H3; fail]].
2: inversion H1 as [];tauto.
subst t'.
exists lv''.
inversion H1 as
[| |t' lv''' lv'''' rv''' ee'' ee_sub' H2 (H3_1,H3_2,H3_3) (H4_1,H4_2,H4_3,H4_4,H4_5) H5 (H6_1,H6_2)| | | |].
(* Check that all names are the given ones: *)
clear t' lv''' lv'''' rv''' ee'' ee_sub' H2 H3_1 H3_2 H3_3 H4_1 H4_2 H4_3 H4_4 H4_5 H5 H6_1 H6_2.
Abort.
|