1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
Require Import TestSuite.admit.
(* Test on definitions referring to section variables that are not any
longer in the current context *)
Section x.
Hypothesis h : forall(n : nat), n < S n.
Definition f(n m : nat)(less : n < m) : nat := n + m.
Lemma a : forall(n : nat), f n (S n) (h n) = 1 + 2 * n.
Proof.
(* XXX *) admit.
Qed.
Lemma b : forall(n : nat), n < 3 + n.
Proof.
clear.
intros n.
Fail assert (H := a n).
Abort.
Let T := True.
Definition p := I : T.
Lemma paradox : False.
Proof.
clear.
set (T := False).
Fail pose proof p as H.
Abort.
End x.
|