File: bug_3051.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (18 lines) | stat: -rw-r--r-- 532 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Inductive Prod (s1 s2 : Set) : Set :=
  | Pair : s1 -> s2 -> Prod s1 s2.

Arguments Pair {_ _} _ _.

Axiom A1 : forall (s1 s2 : Set) (e1 : s1) (e2 : s2) (p1 : Prod s1 s2),
  True -> p1 = Pair e1 e2.

Lemma L1 : forall (s1 s2 : Set) (e1 e3 : s1) (e2 e4 : s2)
  (p1 : Prod s1 s2) (p2 : Prod s1 s2), True -> p1 = Pair e1 e2 ->
  p2 = Pair e3 e4 -> True.
Proof.
intros s1 s2 e1 e3 e2 e4 p1 p2 H1 H2 H3.
repeat rewrite (A1 s1 s2 e1 e2 _ H1) in *.
Check (H2 : Pair e1 e2 = Pair e1 e2).
Check (H3 : Pair e1 e2 = Pair e3 e4).
exact I.
Qed.