1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
Require Import TestSuite.admit.
Set Universe Polymorphism.
Definition Lift
: ltac:(let U1 := constr:(Type) in
let U0 := constr:(Type : U1) in
exact (U0 -> U1))
:= fun T => T.
Fail Check nat:Prop. (* The command has indeed failed with message:
=> Error:
The term "nat" has type "Set" while it is expected to have type "Prop". *)
Set Printing All.
Set Printing Universes.
Fail Check Lift nat : Prop. (* Lift (* Top.8 Top.9 Top.10 *) nat:Prop
: Prop
(* Top.10
Top.9
Top.8 |= Top.10 < Top.9
Top.9 < Top.8
Top.9 <= Prop
*)
*)
Fail Eval compute in Lift nat : Prop.
(* = nat
: Prop *)
Monomorphic Definition Type2 := Type.
Monomorphic Definition Type1 := Type : Type2.
Section Hurkens.
(** Assumption of a retract from Type into Prop *)
Variable down : Type1 -> Prop.
Variable up : Prop -> Type1.
Hypothesis back : forall A, up (down A) -> A.
Hypothesis forth : forall A, A -> up (down A).
Hypothesis backforth : forall (A:Type) (P:A->Type) (a:A),
P (back A (forth A a)) -> P a.
Hypothesis backforth_r : forall (A:Type) (P:A->Type) (a:A),
P a -> P (back A (forth A a)).
(** Proof *)
Definition V : Type1 := forall A:Prop, ((up A -> Prop) -> up A -> Prop) -> up A -> Prop.
Definition U : Type1 := V -> Prop.
Definition sb (z:V) : V := fun A r a => r (z A r) a.
Definition le (i:U -> Prop) (x:U) : Prop := x (fun A r a => i (fun v => sb v A r a)).
Definition le' (i:up (down U) -> Prop) (x:up (down U)) : Prop := le (fun a:U => i (forth _ a)) (back _ x).
Definition induct (i:U -> Prop) : Type1 := forall x:U, up (le i x) -> up (i x).
Definition WF : U := fun z => down (induct (fun a => z (down U) le' (forth _ a))).
Definition I (x:U) : Prop :=
(forall i:U -> Prop, up (le i x) -> up (i (fun v => sb v (down U) le' (forth _ x)))) -> False.
Lemma Omega : forall i:U -> Prop, induct i -> up (i WF).
Proof.
intros i y.
apply y.
unfold le, WF, induct.
apply forth.
intros x H0.
apply y.
unfold sb, le', le.
compute.
apply backforth_r.
exact H0.
Qed.
Lemma lemma1 : induct (fun u => down (I u)).
Proof.
unfold induct.
intros x p.
apply forth.
intro q.
generalize (q (fun u => down (I u)) p).
intro r.
apply back in r.
apply r.
intros i j.
unfold le, sb, le', le in j |-.
apply backforth in j.
specialize q with (i := fun y => i (fun v:V => sb v (down U) le' (forth _ y))).
apply q.
exact j.
Qed.
Lemma lemma2 : (forall i:U -> Prop, induct i -> up (i WF)) -> False.
Proof.
intro x.
generalize (x (fun u => down (I u)) lemma1).
intro r; apply back in r.
apply r.
intros i H0.
apply (x (fun y => i (fun v => sb v (down U) le' (forth _ y)))).
unfold le, WF in H0.
apply back in H0.
exact H0.
Qed.
Theorem paradox : False.
Proof.
exact (lemma2 Omega).
Qed.
End Hurkens.
Definition informative (x : bool) :=
match x with
| true => Type
| false => Prop
end.
Definition depsort (T : Type) (x : bool) : informative x :=
match x with
| true => T
| false => True
end.
(** This definition should fail *)
Fail Definition Box (T : Type1) : Prop := Lift T.
Fail Definition prop {T : Type1} (t : Box T) : T := t.
Fail Definition wrap {T : Type1} (t : T) : Box T := t.
Fail Definition down (x : Type1) : Prop := Box x.
Definition up (x : Prop) : Type1 := x.
Fail Definition back A : up (down A) -> A := @prop A.
Fail Definition forth (A : Type1) : A -> up (down A) := @wrap A.
Fail Definition backforth (A:Type1) (P:A->Type) (a:A) :
P (back A (forth A a)) -> P a := fun H => H.
Fail Definition backforth_r (A:Type1) (P:A->Type) (a:A) :
P a -> P (back A (forth A a)) := fun H => H.
Theorem pandora : False.
Fail apply (paradox down up back forth backforth backforth_r).
admit.
Qed.
Print Assumptions pandora.
|