1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
Typeclasses eauto := debug.
Set Printing All.
Axiom sProp : Set.
Axiom sp : sProp.
(* If we hardcode valueType := nat, it goes through *)
Class StateIs := {
valueType : Type;
stateIs : valueType -> sProp
}.
#[export] Instance NatStateIs : StateIs := {
valueType := nat;
stateIs := fun _ => sp
}.
Canonical Structure NatStateIs.
Class LogicOps F := { land: F -> F }.
#[export] Instance : LogicOps sProp. Admitted.
#[export] Instance : LogicOps Prop. Admitted.
Parameter (n : nat).
(* If this is a [Definition], the resolution goes through fine. *)
Notation vn := (@stateIs _ n).
Definition vn' := (@stateIs _ n).
Definition GOOD : sProp :=
@land _ _ vn'.
(* This doesn't resolve, if PropLogicOps is defined later than SPropLogicOps *)
Definition BAD : sProp :=
@land _ _ vn.
Class A T := { foo : T -> Prop }.
#[export] Instance: A nat. Admitted.
#[export] Instance: A Set. Admitted.
Class B := { U : Type ; b : U }.
#[export] Instance bi: B := {| U := nat ; b := 0 |}.
Canonical Structure bi.
Notation b0N := (@b _ : nat).
Notation b0Ni := (@b bi : nat).
Definition b0D := (@b _ : nat).
Definition GOOD1 := (@foo _ _ b0D).
Definition GOOD2 := (let x := b0N in @foo _ _ x).
Definition GOOD3 := (@foo _ _ b0Ni).
Definition BAD1 := (@foo _ _ b0N). (* Error: The term "b0Ni" has type "nat" while it is expected to have type "Set". *)
|