1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
Require Import BinPos.
Inductive expr : Type :=
Var : nat -> expr
| App : expr -> expr -> expr
| Abs : unit -> expr -> expr.
Inductive expr_acc
: expr -> expr -> Prop :=
acc_App_l : forall f a : expr,
expr_acc f (App f a)
| acc_App_r : forall f a : expr,
expr_acc a (App f a)
| acc_Abs : forall (t : unit) (e : expr),
expr_acc e (Abs t e).
Theorem wf_expr_acc : well_founded expr_acc.
Proof.
red.
refine (fix rec a : Acc expr_acc a :=
match a as a return Acc expr_acc a with
| Var v => Acc_intro _ (fun y (_H : expr_acc y (Var v)) =>
match _H in expr_acc z Z
return match Z return Prop with
| Var _ => Acc _ y
| _ => True
end
with
| acc_App_l _ _ => I
| _ => I
end)
| App f x => Acc_intro _ (fun y (pf : expr_acc y (App f x)) =>
match pf in expr_acc z Z
return match Z return Prop with
| App a b => f = a -> x = b -> Acc expr_acc z
| _ => True
end
with
| acc_App_l f' x' => fun pf _ => match pf in _ = z return
Acc expr_acc z
with
| eq_refl => rec f
end
| acc_App_r f' x' => fun _ pf => match pf in _ = z return
Acc expr_acc z
with
| eq_refl => rec x
end
| _ => I
end eq_refl eq_refl)
| Abs t e => Acc_intro _ (fun y (pf : expr_acc y (Abs t e)) =>
match pf in expr_acc z Z
return match Z return Prop with
| Abs a b => e = b -> Acc expr_acc z
| _ => True
end
with
| acc_Abs f x => fun pf => match pf in _ = z return
Acc expr_acc z
with
| eq_refl => rec e
end
| _ => I
end eq_refl)
end).
Defined.
Theorem wf_expr_acc_delay : well_founded expr_acc.
Proof.
red.
refine (fix rec a : Acc expr_acc a :=
match a as a return Acc expr_acc a with
| Var v => Acc_intro _ (fun y (_H : expr_acc y (Var v)) =>
match _H in expr_acc z Z
return match Z return Prop with
| Var _ => Acc _ y
| _ => True
end
with
| acc_App_l _ _ => I
| _ => I
end)
| App f x => Acc_intro _ (fun y (pf : expr_acc y (App f x)) =>
match pf in expr_acc z Z
return match Z return Prop with
| App a b => (unit -> Acc expr_acc a) -> (unit -> Acc expr_acc b) -> Acc expr_acc z
| _ => True
end
with
| acc_App_l f' x' => fun pf _ => pf tt
| acc_App_r f' x' => fun _ pf => pf tt
| _ => I
end (fun _ => rec f) (fun _ => rec x))
| Abs t e => Acc_intro _ (fun y (pf : expr_acc y (Abs t e)) =>
match pf in expr_acc z Z
return match Z return Prop with
| Abs a b => (unit -> Acc expr_acc b) -> Acc expr_acc z
| _ => True
end
with
| acc_Abs f x => fun pf => pf tt
| _ => I
end (fun _ => rec e))
end);
try solve [ inversion _H ].
Defined.
Fixpoint build_large (n : nat) : expr :=
match n with
| 0 => Var 0
| S n =>
let e := build_large n in
App e e
end.
Section guard.
Context {A : Type} {R : A -> A -> Prop}.
Fixpoint guard (n : nat) (wfR : well_founded R) : well_founded R :=
match n with
| 0 => wfR
| S n0 =>
fun x : A =>
Acc_intro x
(fun (y : A) (_ : R y x) => guard n0 (guard n0 wfR) y)
end.
End guard.
Definition sizeF_delay : expr -> positive.
refine
(@Fix expr (expr_acc)
(wf_expr_acc_delay)
(fun _ => positive)
(fun e =>
match e as e return (forall l, expr_acc l e -> positive) -> positive with
| Var _ => fun _ => 1
| App l r => fun rec => @rec l _ + @rec r _
| Abs _ e => fun rec => 1 + @rec e _
end%positive)).
eapply acc_App_l.
eapply acc_App_r.
eapply acc_Abs.
Defined.
Definition sizeF_guard : expr -> positive.
refine
(@Fix expr (expr_acc)
(guard 5 wf_expr_acc)
(fun _ => positive)
(fun e =>
match e as e return (forall l, expr_acc l e -> positive) -> positive with
| Var _ => fun _ => 1
| App l r => fun rec => @rec l _ + @rec r _
| Abs _ e => fun rec => 1 + @rec e _
end%positive)).
eapply acc_App_l.
eapply acc_App_r.
eapply acc_Abs.
Defined.
Time Eval native_compute in sizeF_delay (build_large 2).
Time Eval native_compute in sizeF_guard (build_large 2).
|