1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
Require Import TestSuite.admit.
Generalizable All Variables.
Set Implicit Arguments.
Set Universe Polymorphism.
Axiom admit : forall {T}, T.
Reserved Infix "o" (at level 40, left associativity).
Class IsEquiv {A B : Type} (f : A -> B) := { equiv_inv : B -> A }.
Record Equiv A B := { equiv_fun :> A -> B ; equiv_isequiv :> IsEquiv equiv_fun }.
#[export] Existing Instance equiv_isequiv.
Delimit Scope equiv_scope with equiv.
Local Open Scope equiv_scope.
Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope.
Axiom IsHSet : Type -> Type.
Existing Class IsHSet.
Definition trunc_equiv' `(f : A <~> B) `{IsHSet A} : IsHSet B := admit.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.
Record PreCategory :=
{ object :> Type;
morphism : object -> object -> Type;
compose : forall s d d',
morphism d d'
-> morphism s d
-> morphism s d'
where "f 'o' g" := (compose f g);
trunc_morphism : forall s d, IsHSet (morphism s d) }.
Bind Scope category_scope with PreCategory.
Infix "o" := (@compose _ _ _ _) : morphism_scope.
Delimit Scope functor_scope with functor.
Record Functor (C D : PreCategory) :=
{
object_of :> C -> D;
morphism_of : forall s d, morphism C s d
-> morphism D (object_of s) (object_of d)
}.
Bind Scope functor_scope with Functor.
Arguments morphism_of [C%_category] [D%_category] F%_functor [s%_object d%_object] m%_morphism : rename, simpl nomatch.
Notation "F '_1' m" := (morphism_of F m) (at level 10, no associativity) : morphism_scope.
Local Open Scope morphism_scope.
Class IsIsomorphism {C : PreCategory} {s d} (m : morphism C s d) := { morphism_inverse : morphism C d s }.
Local Notation "m ^-1" := (morphism_inverse (m := m)) : morphism_scope.
Class Isomorphic {C : PreCategory} s d :=
{
morphism_isomorphic :: morphism C s d;
isisomorphism_isomorphic :: IsIsomorphism morphism_isomorphic
}.
Coercion morphism_isomorphic : Isomorphic >-> morphism.
Local Infix "<~=~>" := Isomorphic (at level 70, no associativity) : category_scope.
Definition isisomorphism_inverse `(@IsIsomorphism C x y m) : IsIsomorphism m^-1 := {| morphism_inverse := m |}.
Global Instance isisomorphism_compose `(@IsIsomorphism C y z m0) `(@IsIsomorphism C x y m1)
: IsIsomorphism (m0 o m1).
admit.
Defined.
Section composition.
Variable C : PreCategory.
Variable D : PreCategory.
Variable E : PreCategory.
Variable G : Functor D E.
Variable F : Functor C D.
Definition composeF : Functor C E
:= Build_Functor
C E
(fun c => G (F c))
(fun _ _ m => morphism_of G (morphism_of F m)).
End composition.
Infix "o" := composeF : functor_scope.
Delimit Scope natural_transformation_scope with natural_transformation.
Record NaturalTransformation C D (F G : Functor C D) := { components_of :> forall c, morphism D (F c) (G c) }.
Section compose.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F F' F'' : Functor C D.
Variable T' : NaturalTransformation F' F''.
Variable T : NaturalTransformation F F'.
Local Notation CO c := (T' c o T c).
Definition composeT
: NaturalTransformation F F'' := Build_NaturalTransformation F F'' (fun c => CO c).
End compose.
Section whisker.
Variable C : PreCategory.
Variable D : PreCategory.
Variable E : PreCategory.
Section L.
Variable F : Functor D E.
Variables G G' : Functor C D.
Variable T : NaturalTransformation G G'.
Local Notation CO c := (morphism_of F (T c)).
Definition whisker_l
:= Build_NaturalTransformation
(F o G) (F o G')
(fun c => CO c).
End L.
Section R.
Variables F F' : Functor D E.
Variable T : NaturalTransformation F F'.
Variable G : Functor C D.
Local Notation CO c := (T (G c)).
Definition whisker_r
:= Build_NaturalTransformation
(F o G) (F' o G)
(fun c => CO c).
End R.
End whisker.
Infix "o" := composeT : natural_transformation_scope.
Infix "oL" := whisker_l (at level 40, left associativity) : natural_transformation_scope.
Infix "oR" := whisker_r (at level 40, left associativity) : natural_transformation_scope.
Section path_natural_transformation.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F G : Functor C D.
Lemma equiv_sig_natural_transformation
: { CO : forall x, morphism D (F x) (G x)
| forall s d (m : morphism C s d),
CO d o F _1 m = G _1 m o CO s }
<~> NaturalTransformation F G.
admit.
Defined.
Global Instance trunc_natural_transformation
: IsHSet (NaturalTransformation F G).
Proof.
eapply trunc_equiv'; [ exact equiv_sig_natural_transformation | ].
admit.
Qed.
End path_natural_transformation.
Definition functor_category (C D : PreCategory) : PreCategory
:= @Build_PreCategory (Functor C D) (@NaturalTransformation C D) (@composeT C D) _.
Notation "C -> D" := (functor_category C D) : category_scope.
Definition NaturalIsomorphism (C D : PreCategory) F G := @Isomorphic (C -> D) F G.
Coercion natural_transformation_of_natural_isomorphism C D F G (T : @NaturalIsomorphism C D F G) : NaturalTransformation F G
:= T : morphism _ _ _.
Local Infix "<~=~>" := NaturalIsomorphism : natural_transformation_scope.
Global Instance isisomorphism_compose'
`(T' : @NaturalTransformation C D F' F'')
`(T : @NaturalTransformation C D F F')
`{@IsIsomorphism (C -> D) F' F'' T'}
`{@IsIsomorphism (C -> D) F F' T}
: @IsIsomorphism (C -> D) F F'' (T' o T)%natural_transformation
:= @isisomorphism_compose (C -> D) _ _ T' _ _ T _.
Arguments isisomorphism_compose' {C D F' F''} T' {F} T {H H0}.
Section lemmas.
Local Open Scope natural_transformation_scope.
Variable C : PreCategory.
Variable F : C -> PreCategory.
Context
{w x y z}
{f : Functor (F w) (F z)} {f0 : Functor (F w) (F y)}
{f1 : Functor (F x) (F y)} {f2 : Functor (F y) (F z)}
{f3 : Functor (F w) (F x)} {f4 : Functor (F x) (F z)}
{f5 : Functor (F w) (F z)} {n : f5 <~=~> (f4 o f3)%functor}
{n0 : f4 <~=~> (f2 o f1)%functor} {n1 : f0 <~=~> (f1 o f3)%functor}
{n2 : f <~=~> (f2 o f0)%functor}.
Lemma p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper'
: @IsIsomorphism
(_ -> _) _ _
(n2 ^-1 o (f2 oL n1 ^-1 o (admit o (n0 oR f3 o n))))%natural_transformation.
Proof.
eapply isisomorphism_compose';
[ eapply isisomorphism_inverse
| eapply isisomorphism_compose';
[ admit
| eapply isisomorphism_compose';
[ admit |
eapply isisomorphism_compose'; [ admit | ]]]].
Set Printing All. Set Printing Universes.
apply @isisomorphism_isomorphic.
Qed.
End lemmas.
|