1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
Require Import TestSuite.admit.
Require Coq.Setoids.Setoid.
Axiom BITS : nat -> Set.
Definition n7 := 7.
Definition n15 := 15.
Definition n31 := 31.
Notation n8 := (S n7).
Notation n16 := (S n15).
Notation n32 := (S n31).
Inductive OpSize := OpSize1 | OpSize2 | OpSize4 .
Definition VWORD s := BITS (match s with OpSize1 => n8 | OpSize2 => n16 | OpSize4 => n32 end).
Definition BYTE := VWORD OpSize1.
Definition WORD := VWORD OpSize2.
Definition DWORD := VWORD OpSize4.
Ltac subst_body :=
repeat match goal with
| [ H := _ |- _ ] => subst H
end.
Import Coq.Setoids.Setoid.
Class Equiv (A : Type) := equiv : relation A.
Infix "===" := equiv (at level 70, no associativity).
Class type (A : Type) {e : Equiv A} := eq_equiv : Equivalence equiv.
Definition setoid_resp {T T'} (f : T -> T') `{e : type T} `{e' : type T'} := forall x y, x === y -> f x === f y.
Record morphism T T' `{e : type T} `{e' : type T'} :=
mkMorph {
morph :> T -> T';
morph_resp : setoid_resp morph}.
Arguments mkMorph [T T' e0 e e1 e'].
Infix "-s>" := morphism (at level 45, right associativity).
Section Morphisms.
Context {S T U V} `{eS : type S} `{eT : type T} `{eU : type U} `{eV : type V}.
Global Instance morph_equiv : Equiv (S -s> T).
admit.
Defined.
Global Instance morph_type : type (S -s> T).
admit.
Defined.
Program Definition mcomp (f: T -s> U) (g: S -s> T) : (S -s> U) :=
mkMorph (fun x => f (g x)) _.
Next Obligation.
admit.
Defined.
End Morphisms.
Infix "<<" := mcomp (at level 35).
Section MorphConsts.
Context {S T U V} `{eS : type S} `{eT : type T} `{eU : type U} `{eV : type V}.
Definition lift2s (f : S -> T -> U) p q : (S -s> T -s> U) :=
mkMorph (fun x => mkMorph (f x) (p x)) q.
End MorphConsts.
#[export] Instance Equiv_PropP : Equiv Prop.
admit.
Defined.
Section SetoidProducts.
Context {A B : Type} `{eA : type A} `{eB : type B}.
Global Instance Equiv_prod : Equiv (A * B).
admit.
Defined.
Global Instance type_prod : type (A * B).
admit.
Defined.
Program Definition mfst : (A * B) -s> A :=
mkMorph (fun p => fst p) _.
Next Obligation.
admit.
Defined.
Program Definition msnd : (A * B) -s> B :=
mkMorph (fun p => snd p) _.
Next Obligation.
admit.
Defined.
Context {C} `{eC : type C}.
Program Definition mprod (f: C -s> A) (g: C -s> B) : C -s> (A * B) :=
mkMorph (fun c => (f c, g c)) _.
Next Obligation.
admit.
Defined.
End SetoidProducts.
Section IndexedProducts.
Record ttyp := {carr :> Type; eqc : Equiv carr; eqok : type carr}.
Global Instance ttyp_proj_eq {A : ttyp} : Equiv A.
admit.
Defined.
Global Instance ttyp_proj_prop {A : ttyp} : type A.
admit.
Defined.
Context {I : Type} {P : I -> ttyp}.
Global Program Instance Equiv_prodI : Equiv (forall i, P i) :=
fun p p' : forall i, P i => (forall i : I, @equiv _ (eqc _) (p i) (p' i)).
Global Instance type_prodI : type (forall i, P i).
admit.
Defined.
Program Definition mprojI (i : I) : (forall i, P i) -s> P i :=
mkMorph (fun X => X i) _.
Next Obligation.
admit.
Defined.
Context {C : Type} `{eC : type C}.
Program Definition mprodI (f : forall i, C -s> P i) : C -s> (forall i, P i) :=
mkMorph (fun c i => f i c) _.
Next Obligation.
admit.
Defined.
End IndexedProducts.
Section Exponentials.
Context {A B C D} `{eA : type A} `{eB : type B} `{eC : type C} `{eD : type D}.
Program Definition comps : (B -s> C) -s> (A -s> B) -s> A -s> C :=
lift2s (fun f g => f << g) _ _.
Next Obligation.
admit.
Defined.
Next Obligation.
admit.
Defined.
Program Definition muncurry (f : A -s> B -s> C) : A * B -s> C :=
mkMorph (fun p => f (fst p) (snd p)) _.
Next Obligation.
admit.
Defined.
Program Definition mcurry (f : A * B -s> C) : A -s> B -s> C :=
lift2s (fun a b => f (a, b)) _ _.
Next Obligation.
admit.
Defined.
Next Obligation.
admit.
Defined.
Program Definition meval : (B -s> A) * B -s> A :=
mkMorph (fun p => fst p (snd p)) _.
Next Obligation.
admit.
Defined.
Program Definition mid : A -s> A := mkMorph (fun x => x) _.
Next Obligation.
admit.
Defined.
Program Definition mconst (b : B) : A -s> B := mkMorph (fun _ => b) _.
Next Obligation.
admit.
Defined.
End Exponentials.
Inductive empty : Set := .
#[export] Instance empty_Equiv : Equiv empty.
admit.
Defined.
#[export] Instance empty_type : type empty.
admit.
Defined.
Section Initials.
Context {A} `{eA : type A}.
Program Definition mzero_init : empty -s> A := mkMorph (fun x => match x with end) _.
Next Obligation.
admit.
Defined.
End Initials.
Section Subsetoid.
Context {A} `{eA : type A} {P : A -> Prop}.
Global Instance subset_Equiv : Equiv {a : A | P a}.
admit.
Defined.
Global Instance subset_type : type {a : A | P a}.
admit.
Defined.
Program Definition mforget : {a : A | P a} -s> A :=
mkMorph (fun x => x) _.
Next Obligation.
admit.
Defined.
Context {B} `{eB : type B}.
Program Definition minherit (f : B -s> A) (HB : forall b, P (f b)) : B -s> {a : A | P a} :=
mkMorph (fun b => exist P (f b) (HB b)) _.
Next Obligation.
admit.
Defined.
End Subsetoid.
Section Option.
Context {A} `{eA : type A}.
Global Instance option_Equiv : Equiv (option A).
admit.
Defined.
Global Instance option_type : type (option A).
admit.
Defined.
End Option.
Section OptDefs.
Context {A B} `{eA : type A} `{eB : type B}.
Program Definition msome : A -s> option A := mkMorph (fun a => Some a) _.
Next Obligation.
admit.
Defined.
Program Definition moptionbind (f : A -s> option B) : option A -s> option B :=
mkMorph (fun oa => match oa with None => None | Some a => f a end) _.
Next Obligation.
admit.
Defined.
End OptDefs.
Generalizable Variables Frm.
Class ILogicOps Frm := {
lentails: relation Frm;
ltrue: Frm;
lfalse: Frm;
limpl: Frm -> Frm -> Frm;
land: Frm -> Frm -> Frm;
lor: Frm -> Frm -> Frm;
lforall: forall {T}, (T -> Frm) -> Frm;
lexists: forall {T}, (T -> Frm) -> Frm
}.
Infix "|--" := lentails (at level 79, no associativity).
Infix "//\\" := land (at level 75, right associativity).
Infix "\\//" := lor (at level 76, right associativity).
Infix "-->>" := limpl (at level 77, right associativity).
Notation "'Forall' x .. y , p" :=
(lforall (fun x => .. (lforall (fun y => p)) .. )) (at level 78, x binder, y binder, right associativity).
Notation "'Exists' x .. y , p" :=
(lexists (fun x => .. (lexists (fun y => p)) .. )) (at level 78, x binder, y binder, right associativity).
Class ILogic Frm {ILOps: ILogicOps Frm} := {
lentailsPre :: PreOrder lentails;
ltrueR: forall C, C |-- ltrue;
lfalseL: forall C, lfalse |-- C;
lforallL: forall T x (P: T -> Frm) C, P x |-- C -> lforall P |-- C;
lforallR: forall T (P: T -> Frm) C, (forall x, C |-- P x) -> C |-- lforall P;
lexistsL: forall T (P: T -> Frm) C, (forall x, P x |-- C) -> lexists P |-- C;
lexistsR: forall T x (P: T -> Frm) C, C |-- P x -> C |-- lexists P;
landL1: forall P Q C, P |-- C -> P //\\ Q |-- C;
landL2: forall P Q C, Q |-- C -> P //\\ Q |-- C;
lorR1: forall P Q C, C |-- P -> C |-- P \\// Q;
lorR2: forall P Q C, C |-- Q -> C |-- P \\// Q;
landR: forall P Q C, C |-- P -> C |-- Q -> C |-- P //\\ Q;
lorL: forall P Q C, P |-- C -> Q |-- C -> P \\// Q |-- C;
landAdj: forall P Q C, C |-- (P -->> Q) -> C //\\ P |-- Q;
limplAdj: forall P Q C, C //\\ P |-- Q -> C |-- (P -->> Q)
}.
#[export] Hint Extern 0 (?x |-- ?x) => reflexivity.
Section ILogicExtra.
Context `{IL: ILogic Frm}.
Definition lpropand (p: Prop) Q := Exists _: p, Q.
Definition lpropimpl (p: Prop) Q := Forall _: p, Q.
End ILogicExtra.
Infix "/\\" := lpropand (at level 75, right associativity).
Infix "->>" := lpropimpl (at level 77, right associativity).
Section ILogic_Fun.
Context (T: Type) `{TType: type T}.
Context `{IL: ILogic Frm}.
Record ILFunFrm := mkILFunFrm {
ILFunFrm_pred :> T -> Frm;
ILFunFrm_closed: forall t t': T, t === t' ->
ILFunFrm_pred t |-- ILFunFrm_pred t'
}.
Notation "'mk'" := @mkILFunFrm.
Program Definition ILFun_Ops : ILogicOps ILFunFrm := {|
lentails P Q := forall t:T, P t |-- Q t;
ltrue := mk (fun t => ltrue) _;
lfalse := mk (fun t => lfalse) _;
limpl P Q := mk (fun t => P t -->> Q t) _;
land P Q := mk (fun t => P t //\\ Q t) _;
lor P Q := mk (fun t => P t \\// Q t) _;
lforall A P := mk (fun t => Forall a, P a t) _;
lexists A P := mk (fun t => Exists a, P a t) _
|}.
Next Obligation.
admit.
Defined.
Next Obligation.
admit.
Defined.
Next Obligation.
admit.
Defined.
Next Obligation.
admit.
Defined.
Next Obligation.
admit.
Defined.
End ILogic_Fun.
Arguments ILFunFrm _ {e} _ {ILOps}.
Arguments mkILFunFrm [T] _ [Frm ILOps].
Program Definition ILFun_eq {T R} {ILOps: ILogicOps R} {ILogic: ILogic R} (P : T -> R) :
@ILFunFrm T _ R ILOps :=
@mkILFunFrm T eq R ILOps P _.
Next Obligation.
admit.
Defined.
#[export] Instance ILogicOps_Prop : ILogicOps Prop | 2 := {|
lentails P Q := (P : Prop) -> Q;
ltrue := True;
lfalse := False;
limpl P Q := P -> Q;
land P Q := P /\ Q;
lor P Q := P \/ Q;
lforall T F := forall x:T, F x;
lexists T F := exists x:T, F x
|}.
#[export] Instance ILogic_Prop : ILogic Prop.
admit.
Defined.
Section FunEq.
Context A `{eT: type A}.
Global Instance FunEquiv {T} : Equiv (T -> A) := {
equiv P Q := forall a, P a === Q a
}.
End FunEq.
Section SepAlgSect.
Class SepAlgOps T `{eT : type T}:= {
sa_unit : T;
sa_mul : T -> T -> T -> Prop
}.
Class SepAlg T `{SAOps: SepAlgOps T} : Type := {
sa_mul_eqL a b c d : sa_mul a b c -> c === d -> sa_mul a b d;
sa_mul_eqR a b c d : sa_mul a b c -> sa_mul a b d -> c === d;
sa_mon a b c : a === b -> sa_mul a c === sa_mul b c;
sa_mulC a b : sa_mul a b === sa_mul b a;
sa_mulA a b c : forall bc abc, sa_mul a bc abc -> sa_mul b c bc ->
exists ac, sa_mul b ac abc /\ sa_mul a c ac;
sa_unitI a : sa_mul a sa_unit a
}.
End SepAlgSect.
Section BILogic.
Class BILOperators (A : Type) := {
empSP : A;
sepSP : A -> A -> A;
wandSP : A -> A -> A
}.
End BILogic.
Notation "a '**' b" := (sepSP a b)
(at level 75, right associativity).
Section BISepAlg.
Context {A} `{sa : SepAlg A}.
Context {B} `{IL: ILogic B}.
Program Instance SABIOps: BILOperators (ILFunFrm A B) := {
empSP := mkILFunFrm e (fun x => sa_unit === x /\\ ltrue) _;
sepSP P Q := mkILFunFrm e (fun x => Exists x1, Exists x2, sa_mul x1 x2 x /\\
P x1 //\\ Q x2) _;
wandSP P Q := mkILFunFrm e (fun x => Forall x1, Forall x2, sa_mul x x1 x2 ->>
P x1 -->> Q x2) _
}.
Next Obligation.
admit.
Defined.
Next Obligation.
admit.
Defined.
Next Obligation.
admit.
Defined.
End BISepAlg.
Set Implicit Arguments.
Definition Chan := WORD.
Definition Data := BYTE.
Inductive Action :=
| Out (c:Chan) (d:Data)
| In (c:Chan) (d:Data).
Definition Actions := list Action.
#[export] Instance ActionsEquiv : Equiv Actions := {
equiv a1 a2 := a1 = a2
}.
Definition OPred := ILFunFrm Actions Prop.
Definition mkOPred (P : Actions -> Prop) : OPred.
admit.
Defined.
Definition eq_opred s := mkOPred (fun s' => s === s').
Definition empOP : OPred.
exact (eq_opred nil).
Defined.
Definition catOP (P Q: OPred) : OPred.
admit.
Defined.
Class IsPointed (T : Type) := point : T.
Generalizable All Variables.
Notation IsPointed_OPred P := (IsPointed (exists x : Actions, (P : OPred) x)).
Record PointedOPred := mkPointedOPred {
OPred_pred :> OPred;
OPred_inhabited: IsPointed_OPred OPred_pred
}.
#[export] Existing Instance OPred_inhabited.
Canonical Structure default_PointedOPred O `{IsPointed_OPred O} : PointedOPred
:= {| OPred_pred := O ; OPred_inhabited := _ |}.
#[export] Instance IsPointed_eq_opred x : IsPointed_OPred (eq_opred x).
admit.
Defined.
#[export] Instance IsPointed_catOP `{IsPointed_OPred P, IsPointed_OPred Q} : IsPointed_OPred (catOP P Q).
admit.
Defined.
Definition Flag := BITS 5.
Definition OF: Flag.
admit.
Defined.
Inductive FlagVal := mkFlag (b: bool) | FlagUnspecified.
Coercion mkFlag : bool >-> FlagVal.
Inductive NonSPReg := EAX | EBX | ECX | EDX | ESI | EDI | EBP.
Inductive Reg := nonSPReg (r: NonSPReg) | ESP.
Inductive AnyReg := regToAnyReg (r: Reg) | EIP.
Inductive BYTEReg := AL|BL|CL|DL|AH|BH|CH|DH.
Inductive WORDReg := mkWordReg (r:Reg).
Definition PState : Type.
admit.
Defined.
#[export] Instance PStateEquiv : Equiv PState.
admit.
Defined.
#[export] Instance PStateType : type PState.
admit.
Defined.
#[export] Instance PStateSepAlgOps: SepAlgOps PState.
admit.
Defined.
Definition SPred : Type.
exact (ILFunFrm PState Prop).
Defined.
Local Existing Instance ILFun_Ops.
Local Existing Instance SABIOps.
Axiom BYTEregIs : BYTEReg -> BYTE -> SPred.
Inductive RegOrFlag :=
| RegOrFlagDWORD :> AnyReg -> RegOrFlag
| RegOrFlagWORD :> WORDReg -> RegOrFlag
| RegOrFlagBYTE :> BYTEReg -> RegOrFlag
| RegOrFlagF :> Flag -> RegOrFlag.
Definition RegOrFlag_target rf :=
match rf with
| RegOrFlagDWORD _ => DWORD
| RegOrFlagWORD _ => WORD
| RegOrFlagBYTE _ => BYTE
| RegOrFlagF _ => FlagVal
end.
Inductive Condition :=
| CC_O | CC_B | CC_Z | CC_BE | CC_S | CC_P | CC_L | CC_LE.
Section ILSpecSect.
Axiom spec : Type.
Global Instance ILOps: ILogicOps spec | 2.
admit.
Defined.
End ILSpecSect.
Axiom parameterized_basic : forall {T_OPred} {proj : T_OPred -> OPred} {T} (P : SPred) (c : T) (O : OPred) (Q : SPred), spec.
Global Notation loopy_basic := (@parameterized_basic PointedOPred OPred_pred _).
Axiom program : Type.
Axiom ConditionIs : forall (cc : Condition) (cv : RegOrFlag_target OF), SPred.
Axiom foldl : forall {T R}, (R -> T -> R) -> R -> list T -> R.
Axiom nth : forall {T}, T -> list T -> nat -> T.
Axiom while : forall (ptest: program)
(cond: Condition) (value: bool)
(pbody: program), program.
Lemma while_rule_ind {quantT}
{ptest} {cond : Condition} {value : bool} {pbody}
{S}
{transition_body : quantT -> quantT}
{P : quantT -> SPred} {Otest : quantT -> OPred} {Obody : quantT -> OPred} {O : quantT -> PointedOPred}
{O_after_test : quantT -> PointedOPred}
{I_state : quantT -> bool -> SPred}
{I_logic : quantT -> bool -> bool}
{Q : quantT -> SPred}
(Htest : S |-- (Forall (x : quantT),
(loopy_basic (P x)
ptest
(Otest x)
(Exists b, I_logic x b = true /\\ I_state x b ** ConditionIs cond b))))
(Hbody : S |-- (Forall (x : quantT),
(loopy_basic (I_logic x value = true /\\ I_state x value ** ConditionIs cond value)
pbody
(Obody x)
(P (transition_body x)))))
(H_after_test : forall x, catOP (Otest x) (O_after_test x) |-- O x)
(H_body_after_test : forall x, I_logic x value = true -> catOP (Obody x) (O (transition_body x)) |-- O_after_test x)
(H_empty : forall x, I_logic x (negb value) = true -> empOP |-- O_after_test x)
(Q_correct : forall x, I_logic x (negb value) = true /\\ I_state x (negb value) ** ConditionIs cond (negb value) |-- Q x)
(Q_safe : forall x, I_logic x value = true -> Q (transition_body x) |-- Q x)
: S |-- (Forall (x : quantT),
loopy_basic (P x)
(while ptest cond value pbody)
(O x)
(Q x)).
admit.
Defined.
Axiom behead : forall {T}, list T -> list T.
Axiom all : forall {T}, (T -> bool) -> list T -> bool.
Axiom all_behead : forall {T} (xs : list T) P, all P xs = true -> all P (behead xs) = true.
#[export] Instance IsPointed_foldlOP A B C f g (init : A * B) `{IsPointed_OPred (g init)}
`{forall a acc, IsPointed_OPred (g acc) -> IsPointed_OPred (g (f acc a))}
(ls : list C)
: IsPointed_OPred (g (foldl f init ls)).
admit.
Defined.
Goal forall (ptest : program) (cond : Condition) (value : bool)
(pbody : program) (T ioT : Type) (P : T -> SPred)
(I : T -> bool -> SPred) (accumulate : T -> ioT -> T)
(Otest Obody : T -> ioT -> PointedOPred)
(coq_test__is_finished : ioT -> bool) (S : spec)
(al : BYTE),
(forall (initial : T) (xs : list ioT) (x : ioT),
all (fun t : ioT => negb (coq_test__is_finished t)) xs = true ->
coq_test__is_finished x = true ->
S
|-- loopy_basic (P initial ** BYTEregIs AL al) ptest
(Otest initial (nth x xs 0))
(I initial
(match coq_test__is_finished (nth x xs 0) with true => negb value | false => value end) **
ConditionIs cond
(match coq_test__is_finished (nth x xs 0) with true => negb value | false => value end))) ->
(forall (initial : T) (xs : list ioT) (x : ioT),
all (fun t : ioT => negb (coq_test__is_finished t)) xs = true ->
xs <> nil ->
coq_test__is_finished x = true ->
S
|-- loopy_basic (I initial value ** ConditionIs cond value) pbody
(Obody initial (nth x xs 0))
(P (accumulate initial (nth x xs 0)) ** BYTEregIs AL al)) ->
forall x : ioT,
coq_test__is_finished x = true ->
S
|-- Forall ixsp : {init_xs : T * list ioT &
all (fun t : ioT => negb (coq_test__is_finished t))
(snd init_xs) = true},
loopy_basic (P (fst (projT1 ixsp)) ** BYTEregIs AL al)
(while ptest cond value pbody)
(catOP
(snd
(foldl
(fun (xy : T * OPred) (v : ioT) =>
(accumulate (fst xy) v,
catOP (catOP (Otest (fst xy) v) (Obody (fst xy) v))
(snd xy))) (fst (projT1 ixsp), empOP)
(snd (projT1 ixsp))))
(Otest (foldl accumulate (fst (projT1 ixsp)) (snd (projT1 ixsp)))
x))
(I (foldl accumulate (fst (projT1 ixsp)) (snd (projT1 ixsp)))
(negb value) ** ConditionIs cond (negb value)).
intros.
eapply @while_rule_ind
with (I_logic := fun ixsp b => match (match (coq_test__is_finished (nth x (snd (projT1 ixsp)) 0)) with true => negb value | false => value end), b with true, true => true | false, false => true | _, _ => false end)
(Otest := fun ixsp => Otest (fst (projT1 ixsp)) (nth x (snd (projT1 ixsp)) 0))
(Obody := fun ixsp => Obody (fst (projT1 ixsp)) (nth x (snd (projT1 ixsp)) 0))
(I_state := fun ixsp => I (fst (projT1 ixsp)))
(transition_body := fun ixsp => let initial := fst (projT1 ixsp) in
let xs := snd (projT1 ixsp) in
existT _ (accumulate initial (nth x xs 0), behead xs) _)
(O_after_test := fun ixsp => let initial := fst (projT1 ixsp) in
let xs := snd (projT1 ixsp) in
match xs with | nil => default_PointedOPred empOP | _ => Obody initial (nth x xs 0) end);
simpl projT1; simpl projT2; simpl fst; simpl snd; clear; let H := fresh in assert (H : False) by (clear; admit); destruct H.
Unshelve.
subst_body; simpl.
Fail refine (all_behead (projT2 _)).
Unset Solve Unification Constraints. refine (all_behead (projT2 _)).
Abort.
|