File: bug_3786.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (33 lines) | stat: -rw-r--r-- 1,309 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Require Import TestSuite.admit.
Require Coq.Lists.List.
Require Coq.Sets.Ensembles.
Import Coq.Sets.Ensembles.
Global Set Implicit Arguments.
Delimit Scope comp_scope with comp.
Inductive Comp : Type -> Type :=
| Return : forall A, A -> Comp A
| Bind : forall A B, Comp A -> (A -> Comp B) -> Comp B
| Pick : forall A, Ensemble A -> Comp A.
Notation ret := Return.
Notation "x <- y ; z" := (Bind y%comp (fun x => z%comp))
                           (at level 81, right associativity,
                            format "'[v' x  <-  y ; '/' z ']'") : comp_scope.
Axiom refine : forall {A} (old : Comp A) (new : Comp A), Prop.
Open Scope comp.
Axiom elements : forall {A} (ls : list A), Ensemble A.
Axiom to_list : forall {A} (S : Ensemble A), Comp (list A).
Axiom finite_set_handle_cardinal : refine (ret 0) (ret 0).
Definition sumUniqueSpec (ls : list nat) : Comp nat.
  exact (ls' <- to_list (elements ls);
         List.fold_right (fun a b' => Bind b' ((fun a b => ret (a + b)) a)) (ret 0) ls').
Defined.
Axiom admit : forall {T}, T.
Definition sumUniqueImpl (ls : list nat)
: { c : _ | refine (sumUniqueSpec ls) (ret c) }%type.
Proof.
  eexists.
  match goal with
    | [ |- refine ?a ?b ] => let a' := eval hnf in a in change (refine a' b)
  end.
  try setoid_rewrite (@finite_set_handle_cardinal).
Abort.