1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
(* -*- mode: coq; coq-prog-args: ("-indices-matter"); mode: visual-line -*- *)
Set Universe Polymorphism.
Set Primitive Projections.
Close Scope nat_scope.
Record prod (A B : Type) := pair { fst : A ; snd : B }.
Arguments pair {A B} _ _.
Arguments fst {A B} _ / .
Arguments snd {A B} _ / .
Notation "x * y" := (prod x y) : type_scope.
Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope.
Unset Strict Universe Declaration.
Definition Type1 := Eval hnf in let gt := (Set : Type@{i}) in Type@{i}.
Definition Type2 := Eval hnf in let gt := (Type1 : Type@{i}) in Type@{i}.
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y" := (@paths _ x y) : type_scope.
Definition concat {A} {x y z : A} (p : x = y) (q : y = z) : x = z
:= match p, q with idpath, idpath => idpath end.
Definition path_prod {A B : Type} (z z' : A * B)
: (fst z = fst z') -> (snd z = snd z') -> (z = z').
Proof.
destruct z, z'; simpl; intros [] []; reflexivity.
Defined.
Module Type TypeM.
Parameter m : Type2.
End TypeM.
Module ProdM (XM : TypeM) (YM : TypeM) <: TypeM.
Definition m := XM.m * YM.m.
End ProdM.
Module Type FunctionM (XM YM : TypeM).
Parameter m : XM.m -> YM.m.
End FunctionM.
Module IdmapM (XM : TypeM) <: FunctionM XM XM.
Definition m := (fun x => x) : XM.m -> XM.m.
End IdmapM.
Module Type HomotopyM (XM YM : TypeM) (fM gM : FunctionM XM YM).
Parameter m : forall x, fM.m x = gM.m x.
End HomotopyM.
Module ComposeM (XM YM ZM : TypeM)
(gM : FunctionM YM ZM) (fM : FunctionM XM YM)
<: FunctionM XM ZM.
Definition m := (fun x => gM.m (fM.m x)).
End ComposeM.
Module Type CorecM (YM ZM : TypeM) (fM : FunctionM YM ZM)
(XM : TypeM) (gM : FunctionM XM ZM).
Parameter m : XM.m -> YM.m.
Parameter m_beta : forall x, fM.m (m x) = gM.m x.
End CorecM.
Module Type CoindpathsM (YM ZM : TypeM) (fM : FunctionM YM ZM)
(XM : TypeM) (hM kM : FunctionM XM YM).
Module fhM := ComposeM XM YM ZM fM hM.
Module fkM := ComposeM XM YM ZM fM kM.
Declare Module mM (pM : HomotopyM XM ZM fhM fkM)
: HomotopyM XM YM hM kM.
End CoindpathsM.
Module Type Comodality (XM : TypeM).
Parameter m : Type2.
Module mM <: TypeM.
Definition m := m.
End mM.
Parameter from : m -> XM.m.
Module fromM <: FunctionM mM XM.
Definition m := from.
End fromM.
Declare Module corecM : CorecM mM XM fromM.
Declare Module coindpathsM : CoindpathsM mM XM fromM.
End Comodality.
Module Comodality_Theory (F : Comodality).
Module F_functor_M (XM YM : TypeM) (fM : FunctionM XM YM)
(FXM : Comodality XM) (FYM : Comodality YM).
Module f_o_from_M <: FunctionM FXM.mM YM.
Definition m := fun x => fM.m (FXM.from x).
End f_o_from_M.
Module mM := FYM.corecM FXM.mM f_o_from_M.
Definition m := mM.m.
End F_functor_M.
Module F_prod_cmp_M (XM YM : TypeM)
(FXM : Comodality XM) (FYM : Comodality YM).
Module PM := ProdM XM YM.
Module PFM := ProdM FXM FYM.
Module fstM <: FunctionM PM XM.
Definition m := @fst XM.m YM.m.
End fstM.
Module sndM <: FunctionM PM YM.
Definition m := @snd XM.m YM.m.
End sndM.
Module FPM := F PM.
Module FfstM := F_functor_M PM XM fstM FPM FXM.
Module FsndM := F_functor_M PM YM sndM FPM FYM.
Definition m : FPM.m -> PFM.m
:= fun z => (FfstM.m z , FsndM.m z).
End F_prod_cmp_M.
Module isequiv_F_prod_cmp_M
(XM YM : TypeM)
(FXM : Comodality XM) (FYM : Comodality YM).
(** The comparison map *)
Module cmpM := F_prod_cmp_M XM YM FXM FYM.
Module FPM := cmpM.FPM.
(** We construct an inverse to it using corecursion. *)
Module prod_from_M <: FunctionM cmpM.PFM cmpM.PM.
Definition m : cmpM.PFM.m -> cmpM.PM.m
:= fun z => ( FXM.from (fst z) , FYM.from (snd z) ).
End prod_from_M.
Module cmpinvM <: FunctionM cmpM.PFM FPM
:= FPM.corecM cmpM.PFM prod_from_M.
(** We prove the first homotopy *)
Module cmpinv_o_cmp_M <: FunctionM FPM FPM
:= ComposeM FPM cmpM.PFM FPM cmpinvM cmpM.
Module idmap_FPM <: FunctionM FPM FPM
:= IdmapM FPM.
Module cip_FPM := FPM.coindpathsM FPM cmpinv_o_cmp_M idmap_FPM.
Module cip_FPHM <: HomotopyM FPM cmpM.PM cip_FPM.fhM cip_FPM.fkM.
Definition m : forall x, cip_FPM.fhM.m x = cip_FPM.fkM.m x.
Proof.
intros x.
refine (concat (cmpinvM.m_beta (cmpM.m x)) _).
apply path_prod@{i i i}; simpl.
- exact (cmpM.FfstM.mM.m_beta x).
- exact (cmpM.FsndM.mM.m_beta x).
Defined.
End cip_FPHM.
End isequiv_F_prod_cmp_M.
End Comodality_Theory.
|