1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
(* File reduced by coq-bug-finder from original input, then from 13191 lines to 1315 lines, then from 1601 lines to 595 lines, then from 585 lines to 379 lines *)
(* coqc version 8.5beta1 (March 2015) compiled on Mar 3 2015 3:50:31 with OCaml 4.01.0
coqtop version cagnode15:/afs/csail.mit.edu/u/j/jgross/coq-8.5,v8.5 (ac62cda8a4f488b94033b108c37556877232137a) *)
Axiom admit : False.
Ltac admit := exfalso; exact admit.
Global Set Primitive Projections.
Notation projT1 := proj1_sig (only parsing).
Notation projT2 := proj2_sig (only parsing).
Definition relation (A : Type) := A -> A -> Type.
Class Reflexive {A} (R : relation A) :=
reflexivity : forall x : A, R x x.
Class Symmetric {A} (R : relation A) :=
symmetry : forall x y, R x y -> R y x.
Notation idmap := (fun x => x).
Delimit Scope function_scope with function.
Delimit Scope path_scope with path.
Delimit Scope fibration_scope with fibration.
Open Scope path_scope.
Open Scope fibration_scope.
Open Scope function_scope.
Notation pr1 := projT1.
Notation pr2 := projT2.
Notation "x .1" := (pr1 x) : fibration_scope.
Notation "x .2" := (pr2 x) : fibration_scope.
Notation compose := (fun g f x => g (f x)).
Notation "g 'o' f" := (compose g%function f%function) (at level 40, left associativity) : function_scope.
Inductive paths {A : Type} (a : A) : A -> Prop :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x
:= match p with idpath => idpath end.
Global Instance symmetric_paths {A} : Symmetric (@paths A) | 0 := @inverse A.
Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z :=
match p, q with idpath, idpath => idpath end.
Notation "1" := idpath : path_scope.
Notation "p @ q" := (concat p%path q%path) (at level 20) : path_scope.
Notation "p ^" := (inverse p%path) (at level 3, format "p '^'") : path_scope.
Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
match p with idpath => u end.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
:= match p with idpath => idpath end.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x)
:= forall x:A, f x = g x.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.
Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g)
: f == g
:= fun x => match h with idpath => 1 end.
Definition Sect {A B : Type} (s : A -> B) (r : B -> A) :=
forall x : A, r (s x) = x.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
equiv_inv : B -> A ;
eisretr : Sect equiv_inv f;
eissect : Sect f equiv_inv;
eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
}.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : function_scope.
Class Contr_internal (A : Type) := BuildContr {
center : A ;
contr : (forall y : A, center = y)
}.
Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.
Notation "n .+1" := (trunc_S n) (at level 2, left associativity, format "n .+1") : trunc_scope.
Local Open Scope trunc_scope.
Notation "-2" := minus_two (at level 0) : trunc_scope.
Notation "-1" := (-2.+1) (at level 0) : trunc_scope.
Notation "0" := (-1.+1) : trunc_scope.
Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
match n with
| -2 => Contr_internal A
| n'.+1 => forall (x y : A), IsTrunc_internal n' (x = y)
end.
Class IsTrunc (n : trunc_index) (A : Type) : Type :=
Trunc_is_trunc : IsTrunc_internal n A.
Tactic Notation "transparent" "assert" "(" ident(name) ":" constr(type) ")" :=
unshelve refine (let __transparent_assert_hypothesis := (_ : type) in _);
[
| (
let H := match goal with H := _ |- _ => constr:(H) end in
rename H into name) ].
Definition transport_idmap_ap A (P : A -> Type) x y (p : x = y) (u : P x)
: transport P p u = transport idmap (ap P p) u
:= match p with idpath => idpath end.
Section Adjointify.
Context {A B : Type} (f : A -> B) (g : B -> A).
Context (isretr : Sect g f) (issect : Sect f g).
Let issect' := fun x =>
ap g (ap f (issect x)^) @ ap g (isretr (f x)) @ issect x.
Let is_adjoint' (a : A) : isretr (f a) = ap f (issect' a).
admit.
Defined.
Definition isequiv_adjointify : IsEquiv f
:= BuildIsEquiv A B f g isretr issect' is_adjoint'.
End Adjointify.
Record TruncType (n : trunc_index) := BuildTruncType {
trunctype_type : Type ;
istrunc_trunctype_type : IsTrunc n trunctype_type
}.
Arguments trunctype_type {_} _.
Coercion trunctype_type : TruncType >-> Sortclass.
Notation "n -Type" := (TruncType n) (at level 1) : type_scope.
Notation hSet := 0-Type.
Module Export Category.
Module Export Core.
Set Implicit Arguments.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.
Record PreCategory :=
Build_PreCategory' {
object :> Type;
morphism : object -> object -> Type;
identity : forall x, morphism x x;
compose : forall s d d',
morphism d d'
-> morphism s d
-> morphism s d'
where "f 'o' g" := (compose f g);
associativity : forall x1 x2 x3 x4
(m1 : morphism x1 x2)
(m2 : morphism x2 x3)
(m3 : morphism x3 x4),
(m3 o m2) o m1 = m3 o (m2 o m1);
associativity_sym : forall x1 x2 x3 x4
(m1 : morphism x1 x2)
(m2 : morphism x2 x3)
(m3 : morphism x3 x4),
m3 o (m2 o m1) = (m3 o m2) o m1;
left_identity : forall a b (f : morphism a b), identity b o f = f;
right_identity : forall a b (f : morphism a b), f o identity a = f;
identity_identity : forall x, identity x o identity x = identity x
}.
Arguments identity {!C%_category} / x%_object : rename.
Arguments compose {!C%_category} / {s d d'}%_object (m1 m2)%_morphism : rename.
Definition Build_PreCategory
object morphism compose identity
associativity left_identity right_identity
:= @Build_PreCategory'
object
morphism
compose
identity
associativity
(fun _ _ _ _ _ _ _ => symmetry _ _ (associativity _ _ _ _ _ _ _))
left_identity
right_identity
(fun _ => left_identity _ _ _).
Module Export CategoryCoreNotations.
Infix "o" := compose : morphism_scope.
Notation "1" := (identity _) : morphism_scope.
End CategoryCoreNotations.
End Core.
End Category.
Module Export Core.
Set Implicit Arguments.
Delimit Scope functor_scope with functor.
Local Open Scope morphism_scope.
Section Functor.
Variables C D : PreCategory.
Record Functor :=
{
object_of :> C -> D;
morphism_of : forall s d, morphism C s d
-> morphism D (object_of s) (object_of d);
composition_of : forall s d d'
(m1 : morphism C s d) (m2: morphism C d d'),
morphism_of _ _ (m2 o m1)
= (morphism_of _ _ m2) o (morphism_of _ _ m1);
identity_of : forall x, morphism_of _ _ (identity x)
= identity (object_of x)
}.
End Functor.
Arguments morphism_of [C%_category] [D%_category] F%_functor [s%_object d%_object] m%_morphism : rename, simpl nomatch.
End Core.
Module Export Morphisms.
Set Implicit Arguments.
Local Open Scope category_scope.
Local Open Scope morphism_scope.
Class IsIsomorphism {C : PreCategory} {s d} (m : morphism C s d) :=
{
morphism_inverse : morphism C d s;
left_inverse : morphism_inverse o m = identity _;
right_inverse : m o morphism_inverse = identity _
}.
Class Isomorphic {C : PreCategory} s d :=
{
morphism_isomorphic :: morphism C s d;
isisomorphism_isomorphic :: IsIsomorphism morphism_isomorphic
}.
Coercion morphism_isomorphic : Isomorphic >-> morphism.
Local Infix "<~=~>" := Isomorphic (at level 70, no associativity) : category_scope.
Section iso_equiv_relation.
Variable C : PreCategory.
Global Instance isisomorphism_identity (x : C) : IsIsomorphism (identity x)
:= {| morphism_inverse := identity x;
left_inverse := left_identity C x x (identity x);
right_inverse := right_identity C x x (identity x) |}.
Global Instance isomorphic_refl : Reflexive (@Isomorphic C)
:= fun x : C => {| morphism_isomorphic := identity x |}.
Definition idtoiso (x y : C) (H : x = y) : Isomorphic x y
:= match H in (_ = y0) return (x <~=~> y0) with
| 1%path => reflexivity x
end.
End iso_equiv_relation.
End Morphisms.
Notation IsCategory C := (forall s d : object C, IsEquiv (@idtoiso C s d)).
Notation isotoid C s d := (@equiv_inv _ _ (@idtoiso C s d) _).
Notation cat_of obj :=
(@Build_PreCategory obj
(fun x y => x -> y)
(fun _ x => x)
(fun _ _ _ f g => f o g)%core
(fun _ _ _ _ _ _ _ => idpath)
(fun _ _ _ => idpath)
(fun _ _ _ => idpath)
).
Definition set_cat : PreCategory := cat_of hSet.
Set Implicit Arguments.
Local Open Scope morphism_scope.
Section Grothendieck.
Variable C : PreCategory.
Variable F : Functor C set_cat.
Record Pair :=
{
c : C;
x : F c
}.
Local Notation Gmorphism s d :=
{ f : morphism C s.(c) d.(c)
| morphism_of F f s.(x) = d.(x) }.
Definition identity_H s
:= apD10 (identity_of F s.(c)) s.(x).
Definition Gidentity s : Gmorphism s s.
Proof.
exists 1.
apply identity_H.
Defined.
Definition Gcategory : PreCategory.
Proof.
unshelve refine (@Build_PreCategory
Pair
(fun s d => Gmorphism s d)
Gidentity
_
_
_
_); admit.
Defined.
End Grothendieck.
Lemma isotoid_1 {C} `{IsCategory C} {x : C} {H : IsIsomorphism (identity x)}
: isotoid C x x {| morphism_isomorphic := (identity x) ; isisomorphism_isomorphic := H |}
= idpath.
admit.
Defined.
Generalizable All Variables.
Section Grothendieck2.
Context `{IsCategory C}.
Variable F : Functor C set_cat.
Instance iscategory_grothendieck_toset : IsCategory (Gcategory F).
Proof.
intros s d.
unshelve refine (isequiv_adjointify _ _ _ _).
{
intro m.
transparent assert (H' : (s.(c) = d.(c))).
{
apply (idtoiso C (x := s.(c)) (y := d.(c)))^-1%function.
exists (m : morphism _ _ _).1.
admit.
}
{
transitivity {| x := transport (fun x => F x) H' s.(x) |}.
admit.
{
change d with {| c := d.(c) ; x := d.(x) |}; simpl.
apply ap.
subst H'.
simpl.
refine (transport_idmap_ap _ (fun x => F x : Type) _ _ _ _ @ _ @ (m : morphism _ _ _).2).
change (fun x => F x : Type) with (trunctype_type o object_of F)%function.
admit.
}
}
}
{
admit.
}
{
intro x.
hnf in s, d.
destruct x.
simpl.
erewrite @isotoid_1.
Abort.
End Grothendieck2.
|