1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
|
(* Lifted from https://coq.inria.fr/bugs/show_bug.cgi?id=4187 *)
(* File reduced by coq-bug-finder from original input, then from 715 lines to 696 lines *)
(* coqc version 8.4pl5 (December 2014) compiled on Dec 28 2014 03:23:16 with OCaml 4.01.0
coqtop version 8.4pl5 (December 2014) *)
Set Asymmetric Patterns.
Axiom proof_admitted : False.
Tactic Notation "admit" := case proof_admitted.
Require Import Coq.Lists.List.
Require Import Coq.Setoids.Setoid.
Global Set Implicit Arguments.
Global Generalizable All Variables.
Coercion is_true : bool >-> Sortclass.
Coercion bool_of_sumbool {A B} (x : {A} + {B}) : bool := if x then true else false.
Fixpoint ForallT {T} (P : T -> Type) (ls : list T) : Type
:= match ls return Type with
| nil => True
| x::xs => (P x * ForallT P xs)%type
end.
Fixpoint Forall_tails {T} (P : list T -> Type) (ls : list T) : Type
:= match ls with
| nil => P nil
| x::xs => (P (x::xs) * Forall_tails P xs)%type
end.
Module Export ADTSynthesis_DOT_Common_DOT_Wf.
Module Export ADTSynthesis.
Module Export Common.
Module Export Wf.
Section wf.
Section wf_prod.
Context A B (RA : relation A) (RB : relation B).
Definition prod_relation : relation (A * B).
exact (fun ab a'b' =>
RA (fst ab) (fst a'b') \/ (fst a'b' = fst ab /\ RB (snd ab) (snd a'b'))).
Defined.
Fixpoint well_founded_prod_relation_helper
a b
(wf_A : Acc RA a) (wf_B : well_founded RB) {struct wf_A}
: Acc prod_relation (a, b)
:= match wf_A with
| Acc_intro fa => (fix wf_B_rec b' (wf_B' : Acc RB b') : Acc prod_relation (a, b')
:= Acc_intro
_
(fun ab =>
match ab as ab return prod_relation ab (a, b') -> Acc prod_relation ab with
| (a'', b'') =>
fun pf =>
match pf with
| or_introl pf'
=> @well_founded_prod_relation_helper
_ _
(fa _ pf')
wf_B
| or_intror (conj pfa pfb)
=> match wf_B' with
| Acc_intro fb
=> eq_rect
_
(fun a'' => Acc prod_relation (a'', b''))
(wf_B_rec _ (fb _ pfb))
_
pfa
end
end
end)
) b (wf_B b)
end.
Definition well_founded_prod_relation : well_founded RA -> well_founded RB -> well_founded prod_relation.
Proof.
intros wf_A wf_B [a b]; hnf in *.
apply well_founded_prod_relation_helper; auto.
Defined.
End wf_prod.
Section wf_projT1.
Context A (B : A -> Type) (R : relation A).
Definition projT1_relation : relation (sigT B).
exact (fun ab a'b' =>
R (projT1 ab) (projT1 a'b')).
Defined.
Definition well_founded_projT1_relation : well_founded R -> well_founded projT1_relation.
Proof.
intros wf [a b]; hnf in *.
induction (wf a) as [a H IH].
constructor.
intros y r.
specialize (IH _ r (projT2 y)).
destruct y.
exact IH.
Defined.
End wf_projT1.
End wf.
Section Fix3.
Context A (B : A -> Type) (C : forall a, B a -> Type) (D : forall a b, C a b -> Type)
(R : A -> A -> Prop) (Rwf : well_founded R)
(P : forall a b c, D a b c -> Type)
(F : forall x : A, (forall y : A, R y x -> forall b c d, P y b c d) -> forall b c d, P x b c d).
Definition Fix3 a b c d : @P a b c d.
exact (@Fix { a : A & { b : B a & { c : C b & D c } } }
(fun x y => R (projT1 x) (projT1 y))
(well_founded_projT1_relation Rwf)
(fun abcd => P (projT2 (projT2 (projT2 abcd))))
(fun x f => @F (projT1 x) (fun y r b c d => f (existT _ y (existT _ b (existT _ c d))) r) _ _ _)
(existT _ a (existT _ b (existT _ c d)))).
Defined.
End Fix3.
End Wf.
End Common.
End ADTSynthesis.
End ADTSynthesis_DOT_Common_DOT_Wf.
Module Export ADTSynthesis_DOT_Parsers_DOT_StringLike_DOT_Core.
Module Export ADTSynthesis.
Module Export Parsers.
Module Export StringLike.
Module Export Core.
Import Coq.Setoids.Setoid.
Import Coq.Classes.Morphisms.
Module Export StringLike.
Class StringLike {Char : Type} :=
{
String :: Type;
is_char : String -> Char -> bool;
length : String -> nat;
take : nat -> String -> String;
drop : nat -> String -> String;
bool_eq : String -> String -> bool;
beq : relation String := fun x y => bool_eq x y
}.
Arguments StringLike : clear implicits.
Infix "=s" := (@beq _ _) (at level 70, no associativity) : type_scope.
Notation "s ~= [ ch ]" := (is_char s ch) (at level 70, no associativity) : string_like_scope.
Local Open Scope string_like_scope.
Definition str_le `{StringLike Char} (s1 s2 : String)
:= length s1 < length s2 \/ s1 =s s2.
Infix "≤s" := str_le (at level 70, right associativity).
Class StringLikeProperties (Char : Type) `{StringLike Char} :=
{
singleton_unique : forall s ch ch', s ~= [ ch ] -> s ~= [ ch' ] -> ch = ch';
length_singleton : forall s ch, s ~= [ ch ] -> length s = 1;
bool_eq_char : forall s s' ch, s ~= [ ch ] -> s' ~= [ ch ] -> s =s s';
is_char_Proper :: Proper (beq ==> eq ==> eq) is_char;
length_Proper :: Proper (beq ==> eq) length;
take_Proper :: Proper (eq ==> beq ==> beq) take;
drop_Proper :: Proper (eq ==> beq ==> beq) drop;
bool_eq_Equivalence :: Equivalence beq;
bool_eq_empty : forall str str', length str = 0 -> length str' = 0 -> str =s str';
take_short_length : forall str n, n <= length str -> length (take n str) = n;
take_long : forall str n, length str <= n -> take n str =s str;
take_take : forall str n m, take n (take m str) =s take (min n m) str;
drop_length : forall str n, length (drop n str) = length str - n;
drop_0 : forall str, drop 0 str =s str;
drop_drop : forall str n m, drop n (drop m str) =s drop (n + m) str;
drop_take : forall str n m, drop n (take m str) =s take (m - n) (drop n str);
take_drop : forall str n m, take n (drop m str) =s drop m (take (n + m) str)
}.
Arguments StringLikeProperties Char {_}.
End StringLike.
End Core.
End StringLike.
End Parsers.
End ADTSynthesis.
End ADTSynthesis_DOT_Parsers_DOT_StringLike_DOT_Core.
Module Export ADTSynthesis.
Module Export Parsers.
Module Export ContextFreeGrammar.
Require Import Coq.Strings.String.
Require Import Coq.Lists.List.
Export ADTSynthesis.Parsers.StringLike.Core.
Import ADTSynthesis.Common.
Local Open Scope string_like_scope.
Section cfg.
Context {Char : Type}.
Section definitions.
Inductive item :=
| Terminal (_ : Char)
| NonTerminal (_ : string).
Definition production := list item.
Definition productions := list production.
Record grammar :=
{
Start_symbol :> string;
Lookup :> string -> productions;
Start_productions :> productions := Lookup Start_symbol;
Valid_nonterminals : list string;
Valid_productions : list productions := map Lookup Valid_nonterminals
}.
End definitions.
Section parse.
Context {HSL : StringLike Char}.
Variable G : grammar.
Inductive parse_of (str : String) : productions -> Type :=
| ParseHead : forall pat pats, parse_of_production str pat
-> parse_of str (pat::pats)
| ParseTail : forall pat pats, parse_of str pats
-> parse_of str (pat::pats)
with parse_of_production (str : String) : production -> Type :=
| ParseProductionNil : length str = 0 -> parse_of_production str nil
| ParseProductionCons : forall n pat pats,
parse_of_item (take n str) pat
-> parse_of_production (drop n str) pats
-> parse_of_production str (pat::pats)
with parse_of_item (str : String) : item -> Type :=
| ParseTerminal : forall ch, str ~= [ ch ] -> parse_of_item str (Terminal ch)
| ParseNonTerminal : forall nt, parse_of str (Lookup G nt)
-> parse_of_item str (NonTerminal nt).
End parse.
End cfg.
Arguments item _ : clear implicits.
Arguments production _ : clear implicits.
Arguments productions _ : clear implicits.
Arguments grammar _ : clear implicits.
End ContextFreeGrammar.
End Parsers.
End ADTSynthesis.
Module Export BaseTypes.
Section recursive_descent_parser.
Class parser_computational_predataT :=
{ nonterminals_listT : Type;
initial_nonterminals_data : nonterminals_listT;
is_valid_nonterminal : nonterminals_listT -> String.string -> bool;
remove_nonterminal : nonterminals_listT -> String.string -> nonterminals_listT;
nonterminals_listT_R : nonterminals_listT -> nonterminals_listT -> Prop;
remove_nonterminal_dec : forall ls nonterminal,
is_valid_nonterminal ls nonterminal
-> nonterminals_listT_R (remove_nonterminal ls nonterminal) ls;
ntl_wf : well_founded nonterminals_listT_R }.
Class parser_removal_dataT' `{predata : parser_computational_predataT} :=
{ remove_nonterminal_1
: forall ls ps ps',
is_valid_nonterminal (remove_nonterminal ls ps) ps'
-> is_valid_nonterminal ls ps';
remove_nonterminal_2
: forall ls ps ps',
is_valid_nonterminal (remove_nonterminal ls ps) ps' = false
<-> is_valid_nonterminal ls ps' = false \/ ps = ps' }.
End recursive_descent_parser.
End BaseTypes.
Import Coq.Lists.List.
Import ADTSynthesis.Parsers.ContextFreeGrammar.
Local Open Scope string_like_scope.
Section cfg.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Context {predata : @parser_computational_predataT}
{rdata' : @parser_removal_dataT' predata}.
Inductive minimal_parse_of
: forall (str0 : String) (valid : nonterminals_listT)
(str : String),
productions Char -> Type :=
| MinParseHead : forall str0 valid str pat pats,
@minimal_parse_of_production str0 valid str pat
-> @minimal_parse_of str0 valid str (pat::pats)
| MinParseTail : forall str0 valid str pat pats,
@minimal_parse_of str0 valid str pats
-> @minimal_parse_of str0 valid str (pat::pats)
with minimal_parse_of_production
: forall (str0 : String) (valid : nonterminals_listT)
(str : String),
production Char -> Type :=
| MinParseProductionNil : forall str0 valid str,
length str = 0
-> @minimal_parse_of_production str0 valid str nil
| MinParseProductionCons : forall str0 valid str n pat pats,
str ≤s str0
-> @minimal_parse_of_item str0 valid (take n str) pat
-> @minimal_parse_of_production str0 valid (drop n str) pats
-> @minimal_parse_of_production str0 valid str (pat::pats)
with minimal_parse_of_item
: forall (str0 : String) (valid : nonterminals_listT)
(str : String),
item Char -> Type :=
| MinParseTerminal : forall str0 valid str ch,
str ~= [ ch ]
-> @minimal_parse_of_item str0 valid str (Terminal ch)
| MinParseNonTerminal
: forall str0 valid str (nt : String.string),
@minimal_parse_of_nonterminal str0 valid str nt
-> @minimal_parse_of_item str0 valid str (NonTerminal nt)
with minimal_parse_of_nonterminal
: forall (str0 : String) (valid : nonterminals_listT)
(str : String),
String.string -> Type :=
| MinParseNonTerminalStrLt
: forall str0 valid (nt : String.string) str,
length str < length str0
-> is_valid_nonterminal initial_nonterminals_data nt
-> @minimal_parse_of str initial_nonterminals_data str (Lookup G nt)
-> @minimal_parse_of_nonterminal str0 valid str nt
| MinParseNonTerminalStrEq
: forall str0 str valid nonterminal,
str =s str0
-> is_valid_nonterminal initial_nonterminals_data nonterminal
-> is_valid_nonterminal valid nonterminal
-> @minimal_parse_of str0 (remove_nonterminal valid nonterminal) str (Lookup G nonterminal)
-> @minimal_parse_of_nonterminal str0 valid str nonterminal.
End cfg.
Import ADTSynthesis.Common.
Section general.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Class boolean_parser_dataT :=
{ predata :: parser_computational_predataT;
split_string_for_production
: item Char -> production Char -> String -> list nat }.
Global Coercion predata : boolean_parser_dataT >-> parser_computational_predataT.
Definition split_list_completeT `{data : @parser_computational_predataT}
{str0 valid}
(it : item Char) (its : production Char)
(str : String)
(pf : str ≤s str0)
(split_list : list nat)
:= ({ n : nat
& (minimal_parse_of_item (G := G) (predata := data) str0 valid (take n str) it)
* (minimal_parse_of_production (G := G) str0 valid (drop n str) its) }%type)
-> ({ n : nat
& (In n split_list)
* (minimal_parse_of_item (G := G) str0 valid (take n str) it)
* (minimal_parse_of_production (G := G) str0 valid (drop n str) its) }%type).
Class boolean_parser_completeness_dataT' `{data : boolean_parser_dataT} :=
{ split_string_for_production_complete
: forall str0 valid str (pf : str ≤s str0) nt,
is_valid_nonterminal initial_nonterminals_data nt
-> ForallT
(Forall_tails
(fun prod
=> match prod return Type with
| nil => True
| it::its
=> @split_list_completeT data str0 valid it its str pf (split_string_for_production it its str)
end))
(Lookup G nt) }.
End general.
Module Export BooleanRecognizer.
Import Coq.Arith.PeanoNat.
Import Coq.Arith.Compare_dec.
Import Coq.Arith.Wf_nat.
Section recursive_descent_parser.
Context {Char} {HSL : StringLike Char} {HSLP : StringLikeProperties Char} {G : grammar Char}.
Context {data : @boolean_parser_dataT Char _}.
Section bool.
Section parts.
Definition parse_item
(str_matches_nonterminal : String.string -> bool)
(str : String)
(it : item Char)
: bool.
Admitted.
Section production.
Context {str0}
(parse_nonterminal
: forall (str : String),
str ≤s str0
-> String.string
-> bool).
Fixpoint parse_production
(str : String)
(pf : str ≤s str0)
(prod : production Char)
: bool.
Proof.
refine
match prod with
| nil =>
Nat.eq_dec (length str) 0
| it::its
=> let parse_production' := fun str pf => parse_production str pf its in
fold_right
orb
false
(map (fun n =>
(parse_item
(parse_nonterminal (str := take n str) _)
(take n str)
it)
&& parse_production' (drop n str) _)%bool
(split_string_for_production it its str))
end;
revert pf; clear -HSLP; intros; admit.
Defined.
End production.
Section productions.
Context {str0}
(parse_nonterminal
: forall (str : String)
(pf : str ≤s str0),
String.string -> bool).
Definition parse_productions
(str : String)
(pf : str ≤s str0)
(prods : productions Char)
: bool.
exact (fold_right orb
false
(map (parse_production parse_nonterminal pf)
prods)).
Defined.
End productions.
Section nonterminals.
Section step.
Context {str0 valid}
(parse_nonterminal
: forall (p : String * nonterminals_listT),
prod_relation (ltof _ length) nonterminals_listT_R p (str0, valid)
-> forall str : String,
str ≤s fst p -> String.string -> bool).
Definition parse_nonterminal_step
(str : String)
(pf : str ≤s str0)
(nt : String.string)
: bool.
Proof.
refine
(if lt_dec (length str) (length str0)
then
parse_productions
(@parse_nonterminal
(str : String, initial_nonterminals_data)
(or_introl _))
(or_intror (reflexivity _))
(Lookup G nt)
else
if Sumbool.sumbool_of_bool (is_valid_nonterminal valid nt)
then
parse_productions
(@parse_nonterminal
(str0 : String, remove_nonterminal valid nt)
(or_intror (conj eq_refl (remove_nonterminal_dec _ nt _))))
(str := str)
_
(Lookup G nt)
else
false);
assumption.
Defined.
End step.
Section wf.
Definition parse_nonterminal_or_abort
: forall (p : String * nonterminals_listT)
(str : String),
str ≤s fst p
-> String.string
-> bool.
exact (Fix3
_ _ _
(well_founded_prod_relation
(well_founded_ltof _ length)
ntl_wf)
_
(fun sl => @parse_nonterminal_step (fst sl) (snd sl))).
Defined.
Definition parse_nonterminal
(str : String)
(nt : String.string)
: bool.
exact (@parse_nonterminal_or_abort
(str : String, initial_nonterminals_data) str
(or_intror (reflexivity _)) nt).
Defined.
End wf.
End nonterminals.
End parts.
End bool.
End recursive_descent_parser.
Section cfg.
Context {Char} {HSL : StringLike Char} {HSLP : @StringLikeProperties Char HSL} (G : grammar Char).
Section definitions.
Context (P : String -> String.string -> Type).
Definition Forall_parse_of_item'
(Forall_parse_of : forall {str pats} (p : parse_of G str pats), Type)
{str it} (p : parse_of_item G str it)
:= match p return Type with
| ParseTerminal ch pf => unit
| ParseNonTerminal nt p'
=> (P str nt * Forall_parse_of p')%type
end.
Fixpoint Forall_parse_of {str pats} (p : parse_of G str pats)
:= match p with
| ParseHead pat pats p'
=> Forall_parse_of_production p'
| ParseTail _ _ p'
=> Forall_parse_of p'
end
with Forall_parse_of_production {str pat} (p : parse_of_production G str pat)
:= match p return Type with
| ParseProductionNil pf => unit
| ParseProductionCons pat strs pats p' p''
=> (Forall_parse_of_item' (@Forall_parse_of) p' * Forall_parse_of_production p'')%type
end.
Definition Forall_parse_of_item {str it} (p : parse_of_item G str it)
:= @Forall_parse_of_item' (@Forall_parse_of) str it p.
End definitions.
End cfg.
Section recursive_descent_parser_list.
Context {Char} {HSL : StringLike Char} {HLSP : StringLikeProperties Char} {G : grammar Char}.
Definition rdp_list_nonterminals_listT : Type.
exact (list String.string).
Defined.
Definition rdp_list_is_valid_nonterminal : rdp_list_nonterminals_listT -> String.string -> bool.
admit.
Defined.
Definition rdp_list_remove_nonterminal : rdp_list_nonterminals_listT -> String.string -> rdp_list_nonterminals_listT.
admit.
Defined.
Definition rdp_list_nonterminals_listT_R : rdp_list_nonterminals_listT -> rdp_list_nonterminals_listT -> Prop.
exact (ltof _ (@List.length _)).
Defined.
Lemma rdp_list_remove_nonterminal_dec : forall ls prods,
@rdp_list_is_valid_nonterminal ls prods = true
-> @rdp_list_nonterminals_listT_R (@rdp_list_remove_nonterminal ls prods) ls.
admit.
Defined.
Lemma rdp_list_ntl_wf : well_founded rdp_list_nonterminals_listT_R.
Proof.
unfold rdp_list_nonterminals_listT_R.
intro.
apply well_founded_ltof.
Defined.
Global Instance rdp_list_predata : parser_computational_predataT
:= { nonterminals_listT := rdp_list_nonterminals_listT;
initial_nonterminals_data := Valid_nonterminals G;
is_valid_nonterminal := rdp_list_is_valid_nonterminal;
remove_nonterminal := rdp_list_remove_nonterminal;
nonterminals_listT_R := rdp_list_nonterminals_listT_R;
remove_nonterminal_dec := rdp_list_remove_nonterminal_dec;
ntl_wf := rdp_list_ntl_wf }.
End recursive_descent_parser_list.
Section sound.
Section general.
Context {Char} {HSL : StringLike Char} {HSLP : StringLikeProperties Char} (G : grammar Char).
Context {data : @boolean_parser_dataT Char _}
{cdata : @boolean_parser_completeness_dataT' Char _ G data}
{rdata : @parser_removal_dataT' predata}.
Section parts.
Section nonterminals.
Section wf.
Lemma parse_nonterminal_sound
(str : String) (nonterminal : String.string)
: parse_nonterminal (G := G) str nonterminal
= true
-> parse_of_item G str (NonTerminal nonterminal).
admit.
Defined.
End wf.
End nonterminals.
End parts.
End general.
End sound.
Import Coq.Strings.String.
Import ADTSynthesis.Parsers.ContextFreeGrammar.
Fixpoint list_to_productions {T} (default : T) (ls : list (string * T)) : string -> T
:= match ls with
| nil => fun _ => default
| (str, t)::ls' => fun s => if string_dec str s
then t
else list_to_productions default ls' s
end.
Fixpoint list_to_grammar {T} (default : productions T) (ls : list (string * productions T)) : grammar T
:= {| Start_symbol := hd ""%string (map (@fst _ _) ls);
Lookup := list_to_productions default ls;
Valid_nonterminals := map (@fst _ _) ls |}.
Section interface.
Context {Char} (G : grammar Char).
Definition production_is_reachable (p : production Char) : Prop.
admit.
Defined.
Definition split_list_is_complete `{HSL : StringLike Char} (str : String) (it : item Char) (its : production Char)
(splits : list nat)
: Prop.
exact (forall n,
n <= length str
-> parse_of_item G (take n str) it
-> parse_of_production G (drop n str) its
-> production_is_reachable (it::its)
-> List.In n splits).
Defined.
Record Splitter :=
{
string_type :> StringLike Char;
splits_for : String -> item Char -> production Char -> list nat;
string_type_properties :> StringLikeProperties Char;
splits_for_complete : forall str it its,
split_list_is_complete str it its (splits_for str it its)
}.
Global Existing Instance string_type_properties.
Record Parser (HSL : StringLike Char) :=
{
has_parse : @String Char HSL -> bool;
has_parse_sound : forall str,
has_parse str = true
-> parse_of_item G str (NonTerminal (Start_symbol G));
has_parse_complete : forall str (p : parse_of_item G str (NonTerminal (Start_symbol G))),
Forall_parse_of_item
(fun _ nt => List.In nt (Valid_nonterminals G))
p
-> has_parse str = true
}.
End interface.
Module Export ParserImplementation.
Section implementation.
Context {Char} {G : grammar Char}.
Context (splitter : Splitter G).
Local Instance parser_data : @boolean_parser_dataT Char _ :=
{ predata := rdp_list_predata (G := G);
split_string_for_production it its str
:= splits_for splitter str it its }.
Program Definition parser : Parser G splitter
:= {| has_parse str := parse_nonterminal (G := G) (data := parser_data) str (Start_symbol G);
has_parse_sound str Hparse := parse_nonterminal_sound G _ _ Hparse;
has_parse_complete str p Hp := _ |}.
Next Obligation.
admit.
Defined.
End implementation.
End ParserImplementation.
Section implementation.
Context {Char} {ls : list (String.string * productions Char)}.
Local Notation G := (list_to_grammar (nil::nil) ls) (only parsing).
Context (splitter : Splitter G).
Local Instance parser_data : @boolean_parser_dataT Char _ := parser_data splitter.
Goal forall str : @String Char splitter,
let G' :=
@BooleanRecognizer.parse_nonterminal Char splitter splitter G parser_data str G = true in
G'.
intros str G'.
Timeout 1 assert (pf' : G' -> Prop) by abstract admit.
Abort.
End implementation.
End BooleanRecognizer.
|