1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|
Require Import List.
Require Import Arith.
Require Import Recdef.
Require Import Lia.
Function foo (xys : (list nat * list nat)) {measure (fun xys => length (fst xys) + length (snd xys))} : list nat :=
match xys with
| (nil, _) => snd xys
| (_, nil) => fst xys
| (x :: xs', y :: ys') => match Nat.compare x y with
| Lt => x :: foo (xs', y :: ys')
| Eq => x :: foo (xs', ys')
| Gt => y :: foo (x :: xs', ys')
end
end.
Proof.
all: simpl; lia.
Qed.
Function bar (xys : (list nat * list nat)) {measure (fun xys => length (fst xys) + length (snd xys))} : list nat :=
let (xs, ys) := xys in
match (xs, ys) with
| (nil, _) => ys
| (_, nil) => xs
| (x :: xs', y :: ys') => match Nat.compare x y with
| Lt => x :: foo (xs', ys)
| Eq => x :: foo (xs', ys')
| Gt => y :: foo (xs, ys')
end
end.
Proof.
Defined.
|