1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
Require Import Coq.Arith.Arith Coq.Init.Wf.
Axiom proof_admitted : False.
Goal exists x y z : nat, Fix
Wf_nat.lt_wf
(fun _ => nat -> nat)
(fun x' f => match x' as x'0
return match x'0 with
| 0 => True
| S x'' => x'' < x'
end
-> nat -> nat
with
| 0 => fun _ _ => 0
| S x'' => f x''
end
(match x' with
| 0 => I
| S x'' => (Nat.lt_succ_diag_r _)
end))
z
y
= 0.
Proof.
do 3 (eexists; [ shelve.. | ]).
match goal with |- ?G => let G' := (eval lazy in G) in change G with G' end.
case proof_admitted.
Unshelve.
all:constructor.
Defined.
|