1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
Require Coq.Classes.RelationClasses.
Class PreOrder (A : Type) (r : A -> A -> Type) : Type :=
{ refl : forall x, r x x }.
(* FAILURE 1 *)
#[universes(polymorphic)]
Section foo.
Polymorphic Universes A.
Polymorphic Context {A : Type@{A}} {rA : A -> A -> Prop} {PO : PreOrder A rA}.
Fail Monomorphic Definition foo := PO.
End foo.
Module ILogic.
Set Universe Polymorphism.
(* Logical connectives *)
Class ILogic@{L} (A : Type@{L}) : Type := mkILogic
{
lentails: A -> A -> Prop;
lentailsPre:: RelationClasses.PreOrder lentails
}.
End ILogic.
Set Printing Universes.
(* There is still a problem if the class is universe polymorphic *)
#[universes(polymorphic)]
Section Embed_ILogic_Pre.
Polymorphic Universes A T.
Fail Monomorphic Context {A : Type@{A}} {ILA: ILogic.ILogic@{A} A}.
End Embed_ILogic_Pre.
|