1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
(* -*- mode: coq; coq-prog-args: ("-nois" "-indices-matter") -*- *)
(* File reduced by coq-bug-finder from original input, then from 1199 lines to
430 lines, then from 444 lines to 430 lines, then from 964 lines to 255 lines,
then from 269 lines to 255 lines *)
(* coqc version 8.5 (January 2016) compiled on Jan 23 2016 16:15:22 with OCaml
4.01.0
coqtop version 8.5 (January 2016) *)
Require Import Coq.Init.Ltac.
Inductive False := .
Axiom proof_admitted : False.
Tactic Notation "admit" := case proof_admitted.
Require Coq.Init.Datatypes.
Require Import Coq.Init.Tactics.
Import Coq.Init.Notations.
Global Set Universe Polymorphism.
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Inductive True : Type :=
I : True.
Module Export Datatypes.
Set Implicit Arguments.
Notation nat := Coq.Init.Datatypes.nat.
Notation O := Coq.Init.Datatypes.O.
Notation S := Coq.Init.Datatypes.S.
Notation two := (S (S O)).
Record prod (A B : Type) := pair { fst : A ; snd : B }.
Notation "x * y" := (prod x y) : type_scope.
Open Scope nat_scope.
End Datatypes.
Module Export Specif.
Set Implicit Arguments.
Record sig {A} (P : A -> Type) := exist { proj1_sig : A ; proj2_sig : P
proj1_sig }.
Notation sigT := sig (only parsing).
Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope.
Notation projT1 := proj1_sig (only parsing).
Notation projT2 := proj2_sig (only parsing).
End Specif.
Definition Type1@{i} := Eval hnf in let gt := (Set : Type@{i}) in Type@{i}.
Definition Type2@{i j} := Eval hnf in let gt := (Type1@{j} : Type@{i}) in
Type@{i}.
Definition Type2le@{i j} := Eval hnf in let gt := (Set : Type@{i}) in
let ge := ((fun x => x) : Type1@{j} ->
Type@{i}) in Type@{i}.
Notation idmap := (fun x => x).
Delimit Scope function_scope with function.
Delimit Scope path_scope with path.
Delimit Scope fibration_scope with fibration.
Open Scope fibration_scope.
Open Scope function_scope.
Notation pr1 := projT1.
Notation pr2 := projT2.
Notation "x .1" := (pr1 x) : fibration_scope.
Notation "x .2" := (pr2 x) : fibration_scope.
Notation compose := (fun g f x => g (f x)).
Notation "g 'o' f" := (compose g%function f%function) (at level 40, left
associativity) : function_scope.
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x
:= match p with idpath => idpath end.
Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z :=
match p, q with idpath, idpath => idpath end.
Notation "p @ q" := (concat p%path q%path) (at level 20) : path_scope.
Notation "p ^" := (inverse p%path) (at level 3, format "p '^'") : path_scope.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
:= match p with idpath => idpath end.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x)
:= forall x:A, f x = g x.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) :
type_scope.
Definition Sect {A B : Type} (s : A -> B) (r : B -> A) :=
forall x : A, r (s x) = x.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
equiv_inv : B -> A ;
eisretr : Sect equiv_inv f;
eissect : Sect f equiv_inv;
eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
}.
Arguments eisretr {A B}%_type_scope f%_function_scope {_} _.
Arguments eissect {A B}%_type_scope f%_function_scope {_} _.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") :
function_scope.
Inductive Unit : Type1 :=
tt : Unit.
Local Open Scope path_scope.
Section EquivInverse.
Context {A B : Type} (f : A -> B) {feq : IsEquiv f}.
Theorem other_adj (b : B) : eissect f (f^-1 b) = ap f^-1 (eisretr f b).
admit.
Defined.
Global Instance isequiv_inverse : IsEquiv f^-1 | 10000
:= BuildIsEquiv B A f^-1 f (eissect f) (eisretr f) other_adj.
End EquivInverse.
Section Adjointify.
Context {A B : Type} (f : A -> B) (g : B -> A).
Context (isretr : Sect g f) (issect : Sect f g).
Let issect' := fun x =>
ap g (ap f (issect x)^) @ ap g (isretr (f x)) @ issect x.
Let is_adjoint' (a : A) : isretr (f a) = ap f (issect' a).
admit.
Defined.
Definition isequiv_adjointify : IsEquiv f
:= BuildIsEquiv A B f g isretr issect' is_adjoint'.
End Adjointify.
Definition ExtensionAlong {A B : Type} (f : A -> B)
(P : B -> Type) (d : forall x:A, P (f x))
:= { s : forall y:B, P y & forall x:A, s (f x) = d x }.
Fixpoint ExtendableAlong@{i j k l}
(n : nat) {A : Type@{i}} {B : Type@{j}}
(f : A -> B) (C : B -> Type@{k}) : Type@{l}
:= match n with
| O => Unit@{l}
| S n => (forall (g : forall a, C (f a)),
ExtensionAlong@{i j k l l} f C g) *
forall (h k : forall b, C b),
ExtendableAlong n f (fun b => h b = k b)
end.
Definition ooExtendableAlong@{i j k l}
{A : Type@{i}} {B : Type@{j}}
(f : A -> B) (C : B -> Type@{k}) : Type@{l}
:= forall n, ExtendableAlong@{i j k l} n f C.
Module Type ReflectiveSubuniverses.
Parameter ReflectiveSubuniverse@{u a} : Type2@{u a}.
Parameter O_reflector@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter In@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter O_inO@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T :
Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T).
Parameter to@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T :
Type@{i}),
T -> O_reflector@{u a i} O T.
Parameter inO_equiv_inO@{u a i j k} :
forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
In@{u a j} O U.
Parameter extendable_to_O@{u a i j k}
: forall (O : ReflectiveSubuniverse@{u a}) {P : Type2le@{i a}} {Q :
Type2le@{j a}} {Q_inO : In@{u a j} O Q},
ooExtendableAlong@{i i j k} (to O P) (fun _ => Q).
End ReflectiveSubuniverses.
Module ReflectiveSubuniverses_Theory (Os : ReflectiveSubuniverses).
Export Os.
Existing Class In.
Coercion O_reflector : ReflectiveSubuniverse >-> Funclass.
Arguments inO_equiv_inO {O} T {U} {_} f {_}.
Global Existing Instance O_inO.
Section ORecursion.
Context {O : ReflectiveSubuniverse}.
Definition O_indpaths {P Q : Type} {Q_inO : In O Q}
(g h : O P -> Q) (p : g o to O P == h o to O P)
: g == h
:= (fst (snd (extendable_to_O O two) g h) p).1.
Definition O_indpaths_beta {P Q : Type} {Q_inO : In O Q}
(g h : O P -> Q) (p : g o (to O P) == h o (to O P)) (x : P)
: O_indpaths g h p (to O P x) = p x
:= (fst (snd (extendable_to_O O two) g h) p).2 x.
End ORecursion.
Section Reflective_Subuniverse.
Universes Ou Oa.
Context (O : ReflectiveSubuniverse@{Ou Oa}).
Definition inO_isequiv_to_O (T:Type)
: IsEquiv (to O T) -> In O T
:= fun _ => inO_equiv_inO (O T) (to O T)^-1.
Definition inO_to_O_retract (T:Type) (mu : O T -> T)
: Sect (to O T) mu -> In O T.
Proof.
unfold Sect; intros H.
apply inO_isequiv_to_O.
apply isequiv_adjointify with (g:=mu).
-
refine (O_indpaths (to O T o mu) idmap _).
intros x; exact (ap (to O T) (H x)).
-
exact H.
Defined.
Definition inO_paths@{i} (S : Type@{i}) {S_inO : In@{Ou Oa i} O S} (x y :
S) : In@{Ou Oa i} O (x=y).
Proof.
simple refine (inO_to_O_retract@{i} _ _ _); intro u.
-
assert (p : (fun _ : O (x=y) => x) == (fun _=> y)).
{
refine (O_indpaths _ _ _); simpl.
intro v; exact v.
}
exact (p u).
-
hnf.
rewrite O_indpaths_beta; reflexivity.
Qed.
Check inO_paths@{Type}.
End Reflective_Subuniverse.
End ReflectiveSubuniverses_Theory.
|